Lahuta teguriteks
-\left(x-\left(7-\sqrt{3}\right)\right)\left(x-\left(\sqrt{3}+7\right)\right)
Arvuta
-x^{2}+14x-46
Graafik
Jagama
Lõikelauale kopeeritud
-x^{2}+14x-46=0
Ruutpolünoomi saab teguriteks lahutada teisendusega ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kus x_{1} ja x_{2} on ruutvõrrandi ax^{2}+bx+c=0 lahendid.
x=\frac{-14±\sqrt{14^{2}-4\left(-1\right)\left(-46\right)}}{2\left(-1\right)}
Kõiki võrrandeid, mis on kujul ax^{2}+bx+c=0, saab lahendada ruutvõrrandi valemiga: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ruutvõrrandi valem annab kaks lahendit: ühe, kui ± on liitmine, ja teise, kui see on lahutamine.
x=\frac{-14±\sqrt{196-4\left(-1\right)\left(-46\right)}}{2\left(-1\right)}
Tõstke 14 ruutu.
x=\frac{-14±\sqrt{196+4\left(-46\right)}}{2\left(-1\right)}
Korrutage omavahel -4 ja -1.
x=\frac{-14±\sqrt{196-184}}{2\left(-1\right)}
Korrutage omavahel 4 ja -46.
x=\frac{-14±\sqrt{12}}{2\left(-1\right)}
Liitke 196 ja -184.
x=\frac{-14±2\sqrt{3}}{2\left(-1\right)}
Leidke 12 ruutjuur.
x=\frac{-14±2\sqrt{3}}{-2}
Korrutage omavahel 2 ja -1.
x=\frac{2\sqrt{3}-14}{-2}
Nüüd lahendage võrrand x=\frac{-14±2\sqrt{3}}{-2}, kui ± on pluss. Liitke -14 ja 2\sqrt{3}.
x=7-\sqrt{3}
Jagage -14+2\sqrt{3} väärtusega -2.
x=\frac{-2\sqrt{3}-14}{-2}
Nüüd lahendage võrrand x=\frac{-14±2\sqrt{3}}{-2}, kui ± on miinus. Lahutage 2\sqrt{3} väärtusest -14.
x=\sqrt{3}+7
Jagage -14-2\sqrt{3} väärtusega -2.
-x^{2}+14x-46=-\left(x-\left(7-\sqrt{3}\right)\right)\left(x-\left(\sqrt{3}+7\right)\right)
Lahutage algne avaldis teguriteks, kasutades valemit ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Asendage x_{1} väärtusega 7-\sqrt{3} ja x_{2} väärtusega 7+\sqrt{3}.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}