Arvuta
5
Lahuta teguriteks
5
Jagama
Lõikelauale kopeeritud
-\frac{\left(\sqrt{2}\right)^{2}-2\sqrt{2}+1}{4\sqrt{2}}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Kasutage kaksliikme \left(\sqrt{2}-1\right)^{2} arendamiseks binoomvalemit \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
-\frac{2-2\sqrt{2}+1}{4\sqrt{2}}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
\sqrt{2} ruut on 2.
-\frac{3-2\sqrt{2}}{4\sqrt{2}}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Liitke 2 ja 1, et leida 3.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{4\left(\sqrt{2}\right)^{2}}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Ratsionaliseerige korrutades lugeja ja \sqrt{2} nimetaja \frac{3-2\sqrt{2}}{4\sqrt{2}} nimetaja.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{4\times 2}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
\sqrt{2} ruut on 2.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Korrutage 4 ja 2, et leida 8.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(\sqrt{5}\right)^{2}+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Kasutage kaksliikme \left(\sqrt{5}+\sqrt{3}\right)^{2} arendamiseks binoomvalemit \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{5+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
\sqrt{5} ruut on 5.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{5+2\sqrt{15}+\left(\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
\sqrt{5} ja \sqrt{3} korrutage numbrid, mis on sama juur.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{5+2\sqrt{15}+3}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
\sqrt{3} ruut on 3.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{8+2\sqrt{15}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Liitke 5 ja 3, et leida 8.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{\left(\sqrt{15}\right)^{2}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Ratsionaliseerige korrutades lugeja ja \sqrt{15} nimetaja \frac{8+2\sqrt{15}}{\sqrt{15}} nimetaja.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
\sqrt{15} ruut on 15.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(\sqrt{2}\right)^{2}+2\sqrt{2}+1}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Kasutage kaksliikme \left(\sqrt{2}+1\right)^{2} arendamiseks binoomvalemit \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{2+2\sqrt{2}+1}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
\sqrt{2} ruut on 2.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{3+2\sqrt{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Liitke 2 ja 1, et leida 3.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{4\left(\sqrt{2}\right)^{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Ratsionaliseerige korrutades lugeja ja \sqrt{2} nimetaja \frac{3+2\sqrt{2}}{4\sqrt{2}} nimetaja.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{4\times 2}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
\sqrt{2} ruut on 2.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
Korrutage 4 ja 2, et leida 8.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(\sqrt{5}\right)^{2}-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{\sqrt{15}}
Kasutage kaksliikme \left(\sqrt{5}-\sqrt{3}\right)^{2} arendamiseks binoomvalemit \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{5-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{\sqrt{15}}
\sqrt{5} ruut on 5.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{5-2\sqrt{15}+\left(\sqrt{3}\right)^{2}}{\sqrt{15}}
\sqrt{5} ja \sqrt{3} korrutage numbrid, mis on sama juur.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{5-2\sqrt{15}+3}{\sqrt{15}}
\sqrt{3} ruut on 3.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{8-2\sqrt{15}}{\sqrt{15}}
Liitke 5 ja 3, et leida 8.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{\left(\sqrt{15}\right)^{2}}
Ratsionaliseerige korrutades lugeja ja \sqrt{15} nimetaja \frac{8-2\sqrt{15}}{\sqrt{15}} nimetaja.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
\sqrt{15} ruut on 15.
-\frac{15\left(3-2\sqrt{2}\right)\sqrt{2}}{120}+\frac{8\left(8+2\sqrt{15}\right)\sqrt{15}}{120}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
Avaldiste liitmiseks või lahutamiseks laiendage need, et neil oleksid ühised nimetajad. 8 ja 15 vähim ühiskordne on 120. Korrutage omavahel -\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8} ja \frac{15}{15}. Korrutage omavahel \frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15} ja \frac{8}{8}.
\frac{-15\left(3-2\sqrt{2}\right)\sqrt{2}+8\left(8+2\sqrt{15}\right)\sqrt{15}}{120}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
Kuna murdudel -\frac{15\left(3-2\sqrt{2}\right)\sqrt{2}}{120} ja \frac{8\left(8+2\sqrt{15}\right)\sqrt{15}}{120} on sama nimetaja, liitke nende lugejad.
\frac{-45\sqrt{2}+60+64\sqrt{15}+240}{120}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
Tehke korrutustehted võrrandis -15\left(3-2\sqrt{2}\right)\sqrt{2}+8\left(8+2\sqrt{15}\right)\sqrt{15}.
\frac{-45\sqrt{2}+300+64\sqrt{15}}{120}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
Tehke arvutustehted avaldises -45\sqrt{2}+60+64\sqrt{15}+240.
\frac{-45\sqrt{2}+300+64\sqrt{15}}{120}+\frac{15\left(3+2\sqrt{2}\right)\sqrt{2}}{120}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
Avaldiste liitmiseks või lahutamiseks laiendage need, et neil oleksid ühised nimetajad. 120 ja 8 vähim ühiskordne on 120. Korrutage omavahel \frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8} ja \frac{15}{15}.
\frac{-45\sqrt{2}+300+64\sqrt{15}+15\left(3+2\sqrt{2}\right)\sqrt{2}}{120}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
Kuna murdudel \frac{-45\sqrt{2}+300+64\sqrt{15}}{120} ja \frac{15\left(3+2\sqrt{2}\right)\sqrt{2}}{120} on sama nimetaja, liitke nende lugejad.
\frac{-45\sqrt{2}+300+64\sqrt{15}+45\sqrt{2}+60}{120}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
Tehke korrutustehted võrrandis -45\sqrt{2}+300+64\sqrt{15}+15\left(3+2\sqrt{2}\right)\sqrt{2}.
\frac{360+64\sqrt{15}}{120}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
Tehke arvutustehted avaldises -45\sqrt{2}+300+64\sqrt{15}+45\sqrt{2}+60.
\frac{360+64\sqrt{15}}{120}-\frac{8\left(8-2\sqrt{15}\right)\sqrt{15}}{120}
Avaldiste liitmiseks või lahutamiseks laiendage need, et neil oleksid ühised nimetajad. 120 ja 15 vähim ühiskordne on 120. Korrutage omavahel \frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15} ja \frac{8}{8}.
\frac{360+64\sqrt{15}-8\left(8-2\sqrt{15}\right)\sqrt{15}}{120}
Kuna murdudel \frac{360+64\sqrt{15}}{120} ja \frac{8\left(8-2\sqrt{15}\right)\sqrt{15}}{120} on sama nimetaja, lahutage nende lugejad.
\frac{360+64\sqrt{15}-64\sqrt{15}+240}{120}
Tehke korrutustehted võrrandis 360+64\sqrt{15}-8\left(8-2\sqrt{15}\right)\sqrt{15}.
\frac{600}{120}
Tehke arvutustehted avaldises 360+64\sqrt{15}-64\sqrt{15}+240.
5
Jagage 600 väärtusega 120, et leida 5.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}