Arvuta
\frac{299}{567}\approx 0,527336861
Lahuta teguriteks
\frac{13 \cdot 23}{3 ^ {4} \cdot 7} = 0,527336860670194
Jagama
Lõikelauale kopeeritud
-\frac{\left(\frac{10}{9}\right)^{2}}{\left(1-\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Liitke \frac{1}{3} ja \frac{7}{9}, et leida \frac{10}{9}.
-\frac{\frac{100}{81}}{\left(1-\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Arvutage 2 aste \frac{10}{9} ja leidke \frac{100}{81}.
-\frac{\frac{100}{81}}{\left(\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Lahutage \frac{1}{2} väärtusest 1, et leida \frac{1}{2}.
-\frac{\frac{100}{81}}{\frac{1}{4}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Arvutage 2 aste \frac{1}{2} ja leidke \frac{1}{4}.
-\frac{\frac{100}{81}}{\frac{1}{4}\left(-8\right)-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Arvutage 3 aste -2 ja leidke -8.
-\frac{\frac{100}{81}}{-2-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Korrutage \frac{1}{4} ja -8, et leida -2.
-\frac{\frac{100}{81}}{-\frac{7}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Lahutage \frac{3}{2} väärtusest -2, et leida -\frac{7}{2}.
-\frac{100}{81}\left(-\frac{2}{7}\right)-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Jagage \frac{100}{81} väärtusega -\frac{7}{2}, korrutades \frac{100}{81} väärtuse -\frac{7}{2} pöördväärtusega.
-\left(-\frac{200}{567}\right)-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Korrutage \frac{100}{81} ja -\frac{2}{7}, et leida -\frac{200}{567}.
\frac{200}{567}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Arvu -\frac{200}{567} vastand on \frac{200}{567}.
\frac{200}{567}-\frac{1}{36}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Arvutage 2 aste -\frac{1}{6} ja leidke \frac{1}{36}.
\frac{737}{2268}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Lahutage \frac{1}{36} väärtusest \frac{200}{567}, et leida \frac{737}{2268}.
\frac{737}{2268}+\frac{\frac{1}{20}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Lahutage \frac{1}{5} väärtusest \frac{1}{4}, et leida \frac{1}{20}.
\frac{737}{2268}+\frac{\frac{1}{20}}{\left(\frac{3}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Lahutage \frac{2}{5} väärtusest 1, et leida \frac{3}{5}.
\frac{737}{2268}+\frac{\frac{1}{20}}{\frac{9}{25}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Arvutage 2 aste \frac{3}{5} ja leidke \frac{9}{25}.
\frac{737}{2268}+\frac{1}{20}\times \frac{25}{9}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Jagage \frac{1}{20} väärtusega \frac{9}{25}, korrutades \frac{1}{20} väärtuse \frac{9}{25} pöördväärtusega.
\frac{737}{2268}+\frac{5}{36}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Korrutage \frac{1}{20} ja \frac{25}{9}, et leida \frac{5}{36}.
\frac{263}{567}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Liitke \frac{737}{2268} ja \frac{5}{36}, et leida \frac{263}{567}.
\frac{263}{567}-\frac{\frac{1}{9}}{\frac{1}{8}-\frac{15}{8}}
Lahutage \frac{2}{9} väärtusest \frac{1}{3}, et leida \frac{1}{9}.
\frac{263}{567}-\frac{\frac{1}{9}}{-\frac{7}{4}}
Lahutage \frac{15}{8} väärtusest \frac{1}{8}, et leida -\frac{7}{4}.
\frac{263}{567}-\frac{1}{9}\left(-\frac{4}{7}\right)
Jagage \frac{1}{9} väärtusega -\frac{7}{4}, korrutades \frac{1}{9} väärtuse -\frac{7}{4} pöördväärtusega.
\frac{263}{567}-\left(-\frac{4}{63}\right)
Korrutage \frac{1}{9} ja -\frac{4}{7}, et leida -\frac{4}{63}.
\frac{263}{567}+\frac{4}{63}
Arvu -\frac{4}{63} vastand on \frac{4}{63}.
\frac{299}{567}
Liitke \frac{263}{567} ja \frac{4}{63}, et leida \frac{299}{567}.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}