Arvuta
12\left(\sqrt{6}+2\sqrt{2}-\sqrt{3}\right)\approx 42,55039272
Jagama
Lõikelauale kopeeritud
2\times 2\sqrt{2}-3\sqrt{3}+5\sqrt{32}-\left(3\sqrt{27}-6\sqrt{24}\right)
Tegurda 8=2^{2}\times 2. Kirjutage \sqrt{2^{2}\times 2} toote juured, kui see ruut \sqrt{2^{2}}\sqrt{2}. Leidke 2^{2} ruutjuur.
4\sqrt{2}-3\sqrt{3}+5\sqrt{32}-\left(3\sqrt{27}-6\sqrt{24}\right)
Korrutage 2 ja 2, et leida 4.
4\sqrt{2}-3\sqrt{3}+5\times 4\sqrt{2}-\left(3\sqrt{27}-6\sqrt{24}\right)
Tegurda 32=4^{2}\times 2. Kirjutage \sqrt{4^{2}\times 2} toote juured, kui see ruut \sqrt{4^{2}}\sqrt{2}. Leidke 4^{2} ruutjuur.
4\sqrt{2}-3\sqrt{3}+20\sqrt{2}-\left(3\sqrt{27}-6\sqrt{24}\right)
Korrutage 5 ja 4, et leida 20.
24\sqrt{2}-3\sqrt{3}-\left(3\sqrt{27}-6\sqrt{24}\right)
Kombineerige 4\sqrt{2} ja 20\sqrt{2}, et leida 24\sqrt{2}.
24\sqrt{2}-3\sqrt{3}-\left(3\times 3\sqrt{3}-6\sqrt{24}\right)
Tegurda 27=3^{2}\times 3. Kirjutage \sqrt{3^{2}\times 3} toote juured, kui see ruut \sqrt{3^{2}}\sqrt{3}. Leidke 3^{2} ruutjuur.
24\sqrt{2}-3\sqrt{3}-\left(9\sqrt{3}-6\sqrt{24}\right)
Korrutage 3 ja 3, et leida 9.
24\sqrt{2}-3\sqrt{3}-\left(9\sqrt{3}-6\times 2\sqrt{6}\right)
Tegurda 24=2^{2}\times 6. Kirjutage \sqrt{2^{2}\times 6} toote juured, kui see ruut \sqrt{2^{2}}\sqrt{6}. Leidke 2^{2} ruutjuur.
24\sqrt{2}-3\sqrt{3}-\left(9\sqrt{3}-12\sqrt{6}\right)
Korrutage -6 ja 2, et leida -12.
24\sqrt{2}-3\sqrt{3}-9\sqrt{3}-\left(-12\sqrt{6}\right)
Avaldise "9\sqrt{3}-12\sqrt{6}" vastandi leidmiseks tuleb leida iga liikme vastand.
24\sqrt{2}-12\sqrt{3}-\left(-12\sqrt{6}\right)
Kombineerige -3\sqrt{3} ja -9\sqrt{3}, et leida -12\sqrt{3}.
24\sqrt{2}-12\sqrt{3}+12\sqrt{6}
Arvu -12\sqrt{6} vastand on 12\sqrt{6}.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}