Liigu edasi põhisisu juurde
Arvuta
Tick mark Image
Lahuta teguriteks
Tick mark Image

Sarnased probleemid veebiotsingust

Jagama

\left(\sqrt{6}\right)^{2}-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Kasutage kaksliikme \left(\sqrt{6}-\sqrt{2}\right)^{2} arendamiseks binoomvalemit \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
6-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
\sqrt{6} ruut on 6.
6-2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Tegurda 6=2\times 3. Kirjutage \sqrt{2\times 3} toote juured, kui see ruut \sqrt{2}\sqrt{3}.
6-2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Korrutage \sqrt{2} ja \sqrt{2}, et leida 2.
6-4\sqrt{3}+\left(\sqrt{2}\right)^{2}-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Korrutage -2 ja 2, et leida -4.
6-4\sqrt{3}+2-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
\sqrt{2} ruut on 2.
8-4\sqrt{3}-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Liitke 6 ja 2, et leida 8.
8-4\sqrt{3}-\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}
Ratsionaliseerige korrutades lugeja ja \sqrt{6}-\sqrt{2} nimetaja \frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}} nimetaja.
8-4\sqrt{3}-\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Mõelge valemile \left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right). Korrutustehte saab ruutude vaheks teisendada järgmise reegli abil: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
8-4\sqrt{3}-\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}{6-2}
Tõstke \sqrt{6} ruutu. Tõstke \sqrt{2} ruutu.
8-4\sqrt{3}-\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}{4}
Lahutage 2 väärtusest 6, et leida 4.
8-4\sqrt{3}-\frac{\left(\sqrt{6}-\sqrt{2}\right)^{2}}{4}
Korrutage \sqrt{6}-\sqrt{2} ja \sqrt{6}-\sqrt{2}, et leida \left(\sqrt{6}-\sqrt{2}\right)^{2}.
8-4\sqrt{3}-\frac{\left(\sqrt{6}\right)^{2}-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4}
Kasutage kaksliikme \left(\sqrt{6}-\sqrt{2}\right)^{2} arendamiseks binoomvalemit \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
8-4\sqrt{3}-\frac{6-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4}
\sqrt{6} ruut on 6.
8-4\sqrt{3}-\frac{6-2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4}
Tegurda 6=2\times 3. Kirjutage \sqrt{2\times 3} toote juured, kui see ruut \sqrt{2}\sqrt{3}.
8-4\sqrt{3}-\frac{6-2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}}{4}
Korrutage \sqrt{2} ja \sqrt{2}, et leida 2.
8-4\sqrt{3}-\frac{6-4\sqrt{3}+\left(\sqrt{2}\right)^{2}}{4}
Korrutage -2 ja 2, et leida -4.
8-4\sqrt{3}-\frac{6-4\sqrt{3}+2}{4}
\sqrt{2} ruut on 2.
8-4\sqrt{3}-\frac{8-4\sqrt{3}}{4}
Liitke 6 ja 2, et leida 8.
8-4\sqrt{3}-\left(2-\sqrt{3}\right)
Jagage 8-4\sqrt{3} iga liige 4-ga, et saada 2-\sqrt{3}.
8-4\sqrt{3}-2+\sqrt{3}
Avaldise "2-\sqrt{3}" vastandi leidmiseks tuleb leida iga liikme vastand.
6-4\sqrt{3}+\sqrt{3}
Lahutage 2 väärtusest 8, et leida 6.
6-3\sqrt{3}
Kombineerige -4\sqrt{3} ja \sqrt{3}, et leida -3\sqrt{3}.