Arvuta
\sqrt{10}\approx 3,16227766
Jagama
Lõikelauale kopeeritud
\left(\sqrt{2}\right)^{2}+2\sqrt{2}\sqrt{5}+\left(\sqrt{5}\right)^{2}-\left(2+\sqrt{10}\right)^{2}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Kasutage kaksliikme \left(\sqrt{2}+\sqrt{5}\right)^{2} arendamiseks binoomvalemit \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
2+2\sqrt{2}\sqrt{5}+\left(\sqrt{5}\right)^{2}-\left(2+\sqrt{10}\right)^{2}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
\sqrt{2} ruut on 2.
2+2\sqrt{10}+\left(\sqrt{5}\right)^{2}-\left(2+\sqrt{10}\right)^{2}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
\sqrt{2} ja \sqrt{5} korrutage numbrid, mis on sama juur.
2+2\sqrt{10}+5-\left(2+\sqrt{10}\right)^{2}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
\sqrt{5} ruut on 5.
7+2\sqrt{10}-\left(2+\sqrt{10}\right)^{2}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Liitke 2 ja 5, et leida 7.
7+2\sqrt{10}-\left(4+4\sqrt{10}+\left(\sqrt{10}\right)^{2}\right)+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Kasutage kaksliikme \left(2+\sqrt{10}\right)^{2} arendamiseks binoomvalemit \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
7+2\sqrt{10}-\left(4+4\sqrt{10}+10\right)+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
\sqrt{10} ruut on 10.
7+2\sqrt{10}-\left(14+4\sqrt{10}\right)+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Liitke 4 ja 10, et leida 14.
7+2\sqrt{10}-14-4\sqrt{10}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Avaldise "14+4\sqrt{10}" vastandi leidmiseks tuleb leida iga liikme vastand.
-7+2\sqrt{10}-4\sqrt{10}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Lahutage 14 väärtusest 7, et leida -7.
-7-2\sqrt{10}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Kombineerige 2\sqrt{10} ja -4\sqrt{10}, et leida -2\sqrt{10}.
-7-2\sqrt{10}+3\sqrt{10}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Tegurda 90=3^{2}\times 10. Kirjutage \sqrt{3^{2}\times 10} toote juured, kui see ruut \sqrt{3^{2}}\sqrt{10}. Leidke 3^{2} ruutjuur.
-7+\sqrt{10}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Kombineerige -2\sqrt{10} ja 3\sqrt{10}, et leida \sqrt{10}.
-7+\sqrt{10}+\left(2\sqrt{2}\right)^{2}-1
Mõelge valemile \left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right). Korrutustehte saab ruutude vaheks teisendada järgmise reegli abil: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Tõstke 1 ruutu.
-7+\sqrt{10}+2^{2}\left(\sqrt{2}\right)^{2}-1
Laiendage \left(2\sqrt{2}\right)^{2}.
-7+\sqrt{10}+4\left(\sqrt{2}\right)^{2}-1
Arvutage 2 aste 2 ja leidke 4.
-7+\sqrt{10}+4\times 2-1
\sqrt{2} ruut on 2.
-7+\sqrt{10}+8-1
Korrutage 4 ja 2, et leida 8.
-7+\sqrt{10}+7
Lahutage 1 väärtusest 8, et leida 7.
\sqrt{10}
Liitke -7 ja 7, et leida 0.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}