Arvuta
-2+2i
Reaalosa
-2
Jagama
Lõikelauale kopeeritud
\left(1+2i\right)i+\left(\frac{1-i}{1+i}\right)^{3}
Arvutage 5 aste i ja leidke i.
-2+i+\left(\frac{1-i}{1+i}\right)^{3}
Korrutage 1+2i ja i, et leida -2+i.
-2+i+\left(\frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}\right)^{3}
Korrutage nii võrrandi \frac{1-i}{1+i} lugeja kui ka nimetaja nimetaja kaaskompleksarvuga 1-i.
-2+i+\left(\frac{-2i}{2}\right)^{3}
Tehke korrutustehted võrrandis \frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
-2+i+\left(-i\right)^{3}
Jagage -2i väärtusega 2, et leida -i.
-2+i+i
Arvutage 3 aste -i ja leidke i.
-2+2i
Liitke -2+i ja i, et leida -2+2i.
Re(\left(1+2i\right)i+\left(\frac{1-i}{1+i}\right)^{3})
Arvutage 5 aste i ja leidke i.
Re(-2+i+\left(\frac{1-i}{1+i}\right)^{3})
Korrutage 1+2i ja i, et leida -2+i.
Re(-2+i+\left(\frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}\right)^{3})
Korrutage nii võrrandi \frac{1-i}{1+i} lugeja kui ka nimetaja nimetaja kaaskompleksarvuga 1-i.
Re(-2+i+\left(\frac{-2i}{2}\right)^{3})
Tehke korrutustehted võrrandis \frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
Re(-2+i+\left(-i\right)^{3})
Jagage -2i väärtusega 2, et leida -i.
Re(-2+i+i)
Arvutage 3 aste -i ja leidke i.
Re(-2+2i)
Liitke -2+i ja i, et leida -2+2i.
-2
Arvu -2+2i reaalosa on -2.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}