Arvuta
\frac{18\sqrt{2}+163}{25921}\approx 0,007270393
Laienda
\frac{18 \sqrt{2} + 163}{25921} = 0,007270392505023561
Viktoriin
Arithmetic
5 probleemid, mis on sarnased:
( \frac { \sqrt { 2 } } { \sqrt { 2 } - 18 } ) ^ { 2 }
Jagama
Lõikelauale kopeeritud
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{\left(\sqrt{2}-18\right)\left(\sqrt{2}+18\right)}\right)^{2}
Ratsionaliseerige korrutades lugeja ja \sqrt{2}+18 nimetaja \frac{\sqrt{2}}{\sqrt{2}-18} nimetaja.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{\left(\sqrt{2}\right)^{2}-18^{2}}\right)^{2}
Mõelge valemile \left(\sqrt{2}-18\right)\left(\sqrt{2}+18\right). Korrutustehte saab ruutude vaheks teisendada järgmise reegli abil: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{2-324}\right)^{2}
Tõstke \sqrt{2} ruutu. Tõstke 18 ruutu.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{-322}\right)^{2}
Lahutage 324 väärtusest 2, et leida -322.
\frac{\left(\sqrt{2}\left(\sqrt{2}+18\right)\right)^{2}}{\left(-322\right)^{2}}
Avaldise \frac{\sqrt{2}\left(\sqrt{2}+18\right)}{-322} astendamiseks astendage nii lugeja kui ka nimetaja ning seejärel tehke jagamistehe.
\frac{\left(\sqrt{2}\right)^{2}\left(\sqrt{2}+18\right)^{2}}{\left(-322\right)^{2}}
Laiendage \left(\sqrt{2}\left(\sqrt{2}+18\right)\right)^{2}.
\frac{2\left(\sqrt{2}+18\right)^{2}}{\left(-322\right)^{2}}
\sqrt{2} ruut on 2.
\frac{2\left(\left(\sqrt{2}\right)^{2}+36\sqrt{2}+324\right)}{\left(-322\right)^{2}}
Kasutage kaksliikme \left(\sqrt{2}+18\right)^{2} arendamiseks binoomvalemit \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
\frac{2\left(2+36\sqrt{2}+324\right)}{\left(-322\right)^{2}}
\sqrt{2} ruut on 2.
\frac{2\left(326+36\sqrt{2}\right)}{\left(-322\right)^{2}}
Liitke 2 ja 324, et leida 326.
\frac{2\left(326+36\sqrt{2}\right)}{103684}
Arvutage 2 aste -322 ja leidke 103684.
\frac{1}{51842}\left(326+36\sqrt{2}\right)
Jagage 2\left(326+36\sqrt{2}\right) väärtusega 103684, et leida \frac{1}{51842}\left(326+36\sqrt{2}\right).
\frac{163}{25921}+\frac{18}{25921}\sqrt{2}
Kasutage distributiivsusomadust, et korrutada \frac{1}{51842} ja 326+36\sqrt{2}.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{\left(\sqrt{2}-18\right)\left(\sqrt{2}+18\right)}\right)^{2}
Ratsionaliseerige korrutades lugeja ja \sqrt{2}+18 nimetaja \frac{\sqrt{2}}{\sqrt{2}-18} nimetaja.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{\left(\sqrt{2}\right)^{2}-18^{2}}\right)^{2}
Mõelge valemile \left(\sqrt{2}-18\right)\left(\sqrt{2}+18\right). Korrutustehte saab ruutude vaheks teisendada järgmise reegli abil: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{2-324}\right)^{2}
Tõstke \sqrt{2} ruutu. Tõstke 18 ruutu.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{-322}\right)^{2}
Lahutage 324 väärtusest 2, et leida -322.
\frac{\left(\sqrt{2}\left(\sqrt{2}+18\right)\right)^{2}}{\left(-322\right)^{2}}
Avaldise \frac{\sqrt{2}\left(\sqrt{2}+18\right)}{-322} astendamiseks astendage nii lugeja kui ka nimetaja ning seejärel tehke jagamistehe.
\frac{\left(\sqrt{2}\right)^{2}\left(\sqrt{2}+18\right)^{2}}{\left(-322\right)^{2}}
Laiendage \left(\sqrt{2}\left(\sqrt{2}+18\right)\right)^{2}.
\frac{2\left(\sqrt{2}+18\right)^{2}}{\left(-322\right)^{2}}
\sqrt{2} ruut on 2.
\frac{2\left(\left(\sqrt{2}\right)^{2}+36\sqrt{2}+324\right)}{\left(-322\right)^{2}}
Kasutage kaksliikme \left(\sqrt{2}+18\right)^{2} arendamiseks binoomvalemit \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
\frac{2\left(2+36\sqrt{2}+324\right)}{\left(-322\right)^{2}}
\sqrt{2} ruut on 2.
\frac{2\left(326+36\sqrt{2}\right)}{\left(-322\right)^{2}}
Liitke 2 ja 324, et leida 326.
\frac{2\left(326+36\sqrt{2}\right)}{103684}
Arvutage 2 aste -322 ja leidke 103684.
\frac{1}{51842}\left(326+36\sqrt{2}\right)
Jagage 2\left(326+36\sqrt{2}\right) väärtusega 103684, et leida \frac{1}{51842}\left(326+36\sqrt{2}\right).
\frac{163}{25921}+\frac{18}{25921}\sqrt{2}
Kasutage distributiivsusomadust, et korrutada \frac{1}{51842} ja 326+36\sqrt{2}.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}