Liigu edasi põhisisu juurde
Lahendage ja leidke x
Tick mark Image
Graafik

Sarnased probleemid veebiotsingust

Jagama

a+b=1 ab=-2
Võrrandi lahendamiseks jaotage x^{2}+x-2 teguriteks, kasutades valemit x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). a ja b leidmiseks häälestage lahendatav süsteem.
a=-1 b=2
Kuna ab on negatiivne, a ja b on vastupidiseid märke. Kuna a+b on positiivne, on positiivne arv negatiivsest väärtusest suurem. Ainult selline paar on süsteemi lahendus.
\left(x-1\right)\left(x+2\right)
Kirjutage teguriteks jaotatud avaldis \left(x+a\right)\left(x+b\right) saadud väärtuste abil ümber.
x=1 x=-2
Võrrandi lahenduste leidmiseks Lahendage x-1=0 ja x+2=0.
a+b=1 ab=1\left(-2\right)=-2
Võrrandi lahendamiseks jaotage võrrandi vasak pool rühmitamise abil teguriteks. Esmalt tuleb vasak pool ümber kirjutada kujul x^{2}+ax+bx-2. a ja b leidmiseks häälestage lahendatav süsteem.
a=-1 b=2
Kuna ab on negatiivne, a ja b on vastupidiseid märke. Kuna a+b on positiivne, on positiivne arv negatiivsest väärtusest suurem. Ainult selline paar on süsteemi lahendus.
\left(x^{2}-x\right)+\left(2x-2\right)
Kirjutagex^{2}+x-2 ümber kujul \left(x^{2}-x\right)+\left(2x-2\right).
x\left(x-1\right)+2\left(x-1\right)
x esimeses ja 2 teises rühmas välja tegur.
\left(x-1\right)\left(x+2\right)
Jagage levinud Termini x-1, kasutades levitava atribuudiga.
x=1 x=-2
Võrrandi lahenduste leidmiseks Lahendage x-1=0 ja x+2=0.
x^{2}+x-2=0
Kõiki võrrandeid, mis on kujul ax^{2}+bx+c=0, saab lahendada ruutvõrrandi valemiga: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ruutvõrrandi valem annab kaks lahendit: ühe, kui ± on liitmine, ja teise, kui see on lahutamine.
x=\frac{-1±\sqrt{1^{2}-4\left(-2\right)}}{2}
See võrrand on standardkujul: ax^{2}+bx+c=0. Asendage ruutvõrrandis \frac{-b±\sqrt{b^{2}-4ac}}{2a} väärtus a väärtusega 1, b väärtusega 1 ja c väärtusega -2.
x=\frac{-1±\sqrt{1-4\left(-2\right)}}{2}
Tõstke 1 ruutu.
x=\frac{-1±\sqrt{1+8}}{2}
Korrutage omavahel -4 ja -2.
x=\frac{-1±\sqrt{9}}{2}
Liitke 1 ja 8.
x=\frac{-1±3}{2}
Leidke 9 ruutjuur.
x=\frac{2}{2}
Nüüd lahendage võrrand x=\frac{-1±3}{2}, kui ± on pluss. Liitke -1 ja 3.
x=1
Jagage 2 väärtusega 2.
x=-\frac{4}{2}
Nüüd lahendage võrrand x=\frac{-1±3}{2}, kui ± on miinus. Lahutage 3 väärtusest -1.
x=-2
Jagage -4 väärtusega 2.
x=1 x=-2
Võrrand on nüüd lahendatud.
x^{2}+x-2=0
Ruutvõrrandite (nagu see siin) lahendamiseks tuleb mõlemad pooled ruutu tõsta. Ruutu tõstmiseks peab võrrand olema esmalt kujul x^{2}+bx=c.
x^{2}+x-2-\left(-2\right)=-\left(-2\right)
Liitke võrrandi mõlema poolega 2.
x^{2}+x=-\left(-2\right)
-2 lahutamine iseendast annab tulemuseks 0.
x^{2}+x=2
Lahutage -2 väärtusest 0.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=2+\left(\frac{1}{2}\right)^{2}
Jagage liikme x kordaja 1 2-ga, et leida \frac{1}{2}. Seejärel liitke \frac{1}{2} ruut võrrandi mõlemale poolele. Selle tehtega saab võrrandi vasakust poolest täisruut.
x^{2}+x+\frac{1}{4}=2+\frac{1}{4}
Tõstke \frac{1}{2} ruutu, tõstes ruutu nii murru lugeja kui ka nimetaja.
x^{2}+x+\frac{1}{4}=\frac{9}{4}
Liitke 2 ja \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{9}{4}
Lahutage x^{2}+x+\frac{1}{4} teguriteks. Üldiselt, kui x^{2}+bx+c on täisruut, saab selle alati teguriteks lahutada kujul \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Leidke võrrandi mõlema poole ruutjuur.
x+\frac{1}{2}=\frac{3}{2} x+\frac{1}{2}=-\frac{3}{2}
Lihtsustage.
x=1 x=-2
Lahutage võrrandi mõlemast poolest \frac{1}{2}.