Lahendage ja leidke x
x = -\frac{5}{2} = -2\frac{1}{2} = -2,5
x=1
Graafik
Jagama
Lõikelauale kopeeritud
2x^{2}+1x+2x=5
Kombineerige x^{2} ja x^{2}, et leida 2x^{2}.
2x^{2}+3x=5
Kombineerige 1x ja 2x, et leida 3x.
2x^{2}+3x-5=0
Lahutage mõlemast poolest 5.
a+b=3 ab=2\left(-5\right)=-10
Võrrandi lahendamiseks jaotage võrrandi vasak pool rühmitamise abil teguriteks. Esmalt tuleb vasak pool ümber kirjutada kujul 2x^{2}+ax+bx-5. a ja b otsimiseks häälestage süsteem lahendatud.
-1,10 -2,5
Kuna ab on negatiivne, a ja b on vastand märki. Kuna a+b on positiivne, on positiivne arv suurem kui negatiivne väärtus. Loetlege kõik täisarvupaarid, mis annavad korrutiseks -10.
-1+10=9 -2+5=3
Arvutage iga paari summa.
a=-2 b=5
Lahendus on paar, mis annab summa 3.
\left(2x^{2}-2x\right)+\left(5x-5\right)
Kirjutage2x^{2}+3x-5 ümber kujul \left(2x^{2}-2x\right)+\left(5x-5\right).
2x\left(x-1\right)+5\left(x-1\right)
Lahutage 2x esimesel ja 5 teise rühma.
\left(x-1\right)\left(2x+5\right)
Tooge liige x-1 distributiivsusomadust kasutades sulgude ette.
x=1 x=-\frac{5}{2}
Võrrandi lahenduste leidmiseks Lahendage x-1=0 ja 2x+5=0.
2x^{2}+1x+2x=5
Kombineerige x^{2} ja x^{2}, et leida 2x^{2}.
2x^{2}+3x=5
Kombineerige 1x ja 2x, et leida 3x.
2x^{2}+3x-5=0
Lahutage mõlemast poolest 5.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-5\right)}}{2\times 2}
See võrrand on standardkujul: ax^{2}+bx+c=0. Asendage ruutvõrrandis \frac{-b±\sqrt{b^{2}-4ac}}{2a} väärtus a väärtusega 2, b väärtusega 3 ja c väärtusega -5.
x=\frac{-3±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
Tõstke 3 ruutu.
x=\frac{-3±\sqrt{9-8\left(-5\right)}}{2\times 2}
Korrutage omavahel -4 ja 2.
x=\frac{-3±\sqrt{9+40}}{2\times 2}
Korrutage omavahel -8 ja -5.
x=\frac{-3±\sqrt{49}}{2\times 2}
Liitke 9 ja 40.
x=\frac{-3±7}{2\times 2}
Leidke 49 ruutjuur.
x=\frac{-3±7}{4}
Korrutage omavahel 2 ja 2.
x=\frac{4}{4}
Nüüd lahendage võrrand x=\frac{-3±7}{4}, kui ± on pluss. Liitke -3 ja 7.
x=1
Jagage 4 väärtusega 4.
x=-\frac{10}{4}
Nüüd lahendage võrrand x=\frac{-3±7}{4}, kui ± on miinus. Lahutage 7 väärtusest -3.
x=-\frac{5}{2}
Taandage murd \frac{-10}{4} vähimale ühiskordsele, eraldades ja taandades arvu 2.
x=1 x=-\frac{5}{2}
Võrrand on nüüd lahendatud.
2x^{2}+1x+2x=5
Kombineerige x^{2} ja x^{2}, et leida 2x^{2}.
2x^{2}+3x=5
Kombineerige 1x ja 2x, et leida 3x.
\frac{2x^{2}+3x}{2}=\frac{5}{2}
Jagage mõlemad pooled 2-ga.
x^{2}+\frac{3}{2}x=\frac{5}{2}
2-ga jagamine võtab 2-ga korrutamise tagasi.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=\frac{5}{2}+\left(\frac{3}{4}\right)^{2}
Jagage liikme x kordaja \frac{3}{2} 2-ga, et leida \frac{3}{4}. Seejärel liitke \frac{3}{4} ruut võrrandi mõlemale poolele. Selle tehtega saab võrrandi vasakust poolest täisruut.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{5}{2}+\frac{9}{16}
Tõstke \frac{3}{4} ruutu, tõstes ruutu nii murru lugeja kui ka nimetaja.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{49}{16}
Liitke \frac{5}{2} ja \frac{9}{16}, leides ühise nimetaja ning liites lugejad. Seejärel taandage murd võimaluse korral vähimale ühiskordsele.
\left(x+\frac{3}{4}\right)^{2}=\frac{49}{16}
Lahutage x^{2}+\frac{3}{2}x+\frac{9}{16}. Kui x^{2}+bx+c on üldiselt täiuslik ruut, saab selle alati teguriteks lahutada kui \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Leidke võrrandi mõlema poole ruutjuur.
x+\frac{3}{4}=\frac{7}{4} x+\frac{3}{4}=-\frac{7}{4}
Lihtsustage.
x=1 x=-\frac{5}{2}
Lahutage võrrandi mõlemast poolest \frac{3}{4}.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}