Liigu edasi põhisisu juurde
Lahendage ja leidke x
Tick mark Image
Graafik

Sarnased probleemid veebiotsingust

Jagama

x^{2}+2x+1=1-3x
Kasutage kaksliikme \left(x+1\right)^{2} arendamiseks binoomvalemit \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
x^{2}+2x+1-1=-3x
Lahutage mõlemast poolest 1.
x^{2}+2x=-3x
Lahutage 1 väärtusest 1, et leida 0.
x^{2}+2x+3x=0
Liitke 3x mõlemale poolele.
x^{2}+5x=0
Kombineerige 2x ja 3x, et leida 5x.
x\left(x+5\right)=0
Tooge x sulgude ette.
x=0 x=-5
Võrrandi lahenduste leidmiseks Lahendage x=0 ja x+5=0.
x^{2}+2x+1=1-3x
Kasutage kaksliikme \left(x+1\right)^{2} arendamiseks binoomvalemit \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
x^{2}+2x+1-1=-3x
Lahutage mõlemast poolest 1.
x^{2}+2x=-3x
Lahutage 1 väärtusest 1, et leida 0.
x^{2}+2x+3x=0
Liitke 3x mõlemale poolele.
x^{2}+5x=0
Kombineerige 2x ja 3x, et leida 5x.
x=\frac{-5±\sqrt{5^{2}}}{2}
See võrrand on standardkujul: ax^{2}+bx+c=0. Asendage ruutvõrrandis \frac{-b±\sqrt{b^{2}-4ac}}{2a} väärtus a väärtusega 1, b väärtusega 5 ja c väärtusega 0.
x=\frac{-5±5}{2}
Leidke 5^{2} ruutjuur.
x=\frac{0}{2}
Nüüd lahendage võrrand x=\frac{-5±5}{2}, kui ± on pluss. Liitke -5 ja 5.
x=0
Jagage 0 väärtusega 2.
x=-\frac{10}{2}
Nüüd lahendage võrrand x=\frac{-5±5}{2}, kui ± on miinus. Lahutage 5 väärtusest -5.
x=-5
Jagage -10 väärtusega 2.
x=0 x=-5
Võrrand on nüüd lahendatud.
x^{2}+2x+1=1-3x
Kasutage kaksliikme \left(x+1\right)^{2} arendamiseks binoomvalemit \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
x^{2}+2x+1-1=-3x
Lahutage mõlemast poolest 1.
x^{2}+2x=-3x
Lahutage 1 väärtusest 1, et leida 0.
x^{2}+2x+3x=0
Liitke 3x mõlemale poolele.
x^{2}+5x=0
Kombineerige 2x ja 3x, et leida 5x.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=\left(\frac{5}{2}\right)^{2}
Jagage liikme x kordaja 5 2-ga, et leida \frac{5}{2}. Seejärel liitke \frac{5}{2} ruut võrrandi mõlemale poolele. Selle tehtega saab võrrandi vasakust poolest täisruut.
x^{2}+5x+\frac{25}{4}=\frac{25}{4}
Tõstke \frac{5}{2} ruutu, tõstes ruutu nii murru lugeja kui ka nimetaja.
\left(x+\frac{5}{2}\right)^{2}=\frac{25}{4}
Lahutage x^{2}+5x+\frac{25}{4}. Kui x^{2}+bx+c on üldiselt täiuslik ruut, saab selle alati teguriteks lahutada kui \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Leidke võrrandi mõlema poole ruutjuur.
x+\frac{5}{2}=\frac{5}{2} x+\frac{5}{2}=-\frac{5}{2}
Lihtsustage.
x=0 x=-5
Lahutage võrrandi mõlemast poolest \frac{5}{2}.