Liigu edasi põhisisu juurde
Lahendage ja leidke y
Tick mark Image
Lahendage ja leidke x
Tick mark Image

Jagama

\left(\sqrt{\frac{\frac{\frac{\frac{yx}{545}}{2x}}{455}}{5555\left(z^{2}\right)^{\frac{x}{z\sqrt{51}}}z}}\right)^{2}=50000
Avaldage \frac{\frac{\frac{\frac{\frac{yx}{545}}{2x}}{455}}{5555\left(z^{2}\right)^{\frac{x}{z\sqrt{51}}}}}{z} ühe murdarvuna.
\left(\sqrt{\frac{\frac{\frac{yx}{545\times 2x}}{455}}{5555\left(z^{2}\right)^{\frac{x}{z\sqrt{51}}}z}}\right)^{2}=50000
Avaldage \frac{\frac{yx}{545}}{2x} ühe murdarvuna.
\left(\sqrt{\frac{\frac{\frac{y}{2\times 545}}{455}}{5555\left(z^{2}\right)^{\frac{x}{z\sqrt{51}}}z}}\right)^{2}=50000
Taandage x nii lugejas kui ka nimetajas.
\left(\sqrt{\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x}{z\sqrt{51}}}z}}\right)^{2}=50000
Korrutage 2 ja 545, et leida 1090.
\left(\sqrt{\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x\sqrt{51}}{z\left(\sqrt{51}\right)^{2}}}z}}\right)^{2}=50000
Ratsionaliseerige korrutades lugeja ja \sqrt{51} nimetaja \frac{x}{z\sqrt{51}} nimetaja.
\left(\sqrt{\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x\sqrt{51}}{z\times 51}}z}}\right)^{2}=50000
\sqrt{51} ruut on 51.
\left(\sqrt{\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{\sqrt{51}x}{51z}}z}}\right)^{2}=50000
Kui avaldised pole tehtes \frac{x\sqrt{51}}{z\times 51} veel teguriteks lahutatud, tehke seda.
\left(\sqrt{\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}}\right)^{2}=50000
Taandage \sqrt{51} nii lugejas kui ka nimetajas.
\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}=50000
Arvutage 2 aste \sqrt{\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}} ja leidke \frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}.
\frac{\frac{y}{1090}}{455\times 5555\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}=50000
Avaldage \frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z} ühe murdarvuna.
\frac{\frac{y}{1090}}{2527525\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}=50000
Korrutage 455 ja 5555, et leida 2527525.
\frac{y}{1090\times 2527525\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}=50000
Avaldage \frac{\frac{y}{1090}}{2527525\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z} ühe murdarvuna.
\frac{y}{2755002250\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}=50000
Korrutage 1090 ja 2527525, et leida 2755002250.
\frac{\left(z^{2}\right)^{-\frac{x}{\sqrt{51}z}}}{2755002250z}y=50000
Võrrand on standardkujul.
\frac{\frac{\left(z^{2}\right)^{-\frac{x}{\sqrt{51}z}}}{2755002250z}y\times 2755002250z}{\left(z^{2}\right)^{-\frac{x}{\sqrt{51}z}}}=\frac{50000\times 2755002250z}{\left(z^{2}\right)^{-\frac{x}{\sqrt{51}z}}}
Jagage mõlemad pooled \frac{1}{2755002250}\left(z^{2}\right)^{-x\left(\sqrt{51}\right)^{-1}z^{-1}}z^{-1}-ga.
y=\frac{50000\times 2755002250z}{\left(z^{2}\right)^{-\frac{x}{\sqrt{51}z}}}
\frac{1}{2755002250}\left(z^{2}\right)^{-x\left(\sqrt{51}\right)^{-1}z^{-1}}z^{-1}-ga jagamine võtab \frac{1}{2755002250}\left(z^{2}\right)^{-x\left(\sqrt{51}\right)^{-1}z^{-1}}z^{-1}-ga korrutamise tagasi.
y=137750112500000z\left(z^{2}\right)^{\frac{\sqrt{51}x}{51z}}
Jagage 50000 väärtusega \frac{1}{2755002250}\left(z^{2}\right)^{-x\left(\sqrt{51}\right)^{-1}z^{-1}}z^{-1}.