Arvuta
2
Jagama
Lõikelauale kopeeritud
\left(\frac{1}{2}\right)^{2}\left(\cos(45)\right)^{2}+4\left(\tan(30)\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Leidke \sin(30) väärtus trigonomeetriliste väärtuste tabelist.
\frac{1}{4}\left(\cos(45)\right)^{2}+4\left(\tan(30)\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Arvutage 2 aste \frac{1}{2} ja leidke \frac{1}{4}.
\frac{1}{4}\times \left(\frac{\sqrt{2}}{2}\right)^{2}+4\left(\tan(30)\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Leidke \cos(45) väärtus trigonomeetriliste väärtuste tabelist.
\frac{1}{4}\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+4\left(\tan(30)\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Avaldise \frac{\sqrt{2}}{2} astendamiseks astendage nii lugeja kui ka nimetaja ning seejärel tehke jagamistehe.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+4\left(\tan(30)\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Korrutage omavahel \frac{1}{4} ja \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}. Seejärel taandage murd võimaluse korral vähimale ühiskordsele.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+4\times \left(\frac{\sqrt{3}}{3}\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Leidke \tan(30) väärtus trigonomeetriliste väärtuste tabelist.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+4\times \frac{\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Avaldise \frac{\sqrt{3}}{3} astendamiseks astendage nii lugeja kui ka nimetaja ning seejärel tehke jagamistehe.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Avaldage 4\times \frac{\left(\sqrt{3}\right)^{2}}{3^{2}} ühe murdarvuna.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{1}{2}\times 1^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Leidke \sin(90) väärtus trigonomeetriliste väärtuste tabelist.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{1}{2}\times 1-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Arvutage 2 aste 1 ja leidke 1.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{1}{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Korrutage \frac{1}{2} ja 1, et leida \frac{1}{2}.
\frac{9\left(\sqrt{2}\right)^{2}}{144}+\frac{16\times 4\left(\sqrt{3}\right)^{2}}{144}+\frac{1}{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Avaldiste liitmiseks või lahutamiseks laiendage need, et neil oleksid ühised nimetajad. 4\times 2^{2} ja 3^{2} vähim ühiskordne on 144. Korrutage omavahel \frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}} ja \frac{9}{9}. Korrutage omavahel \frac{4\left(\sqrt{3}\right)^{2}}{3^{2}} ja \frac{16}{16}.
\frac{9\left(\sqrt{2}\right)^{2}+16\times 4\left(\sqrt{3}\right)^{2}}{144}+\frac{1}{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Kuna murdudel \frac{9\left(\sqrt{2}\right)^{2}}{144} ja \frac{16\times 4\left(\sqrt{3}\right)^{2}}{144} on sama nimetaja, liitke nende lugejad.
\frac{\left(\sqrt{2}\right)^{2}}{16}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{8}{16}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Avaldiste liitmiseks või lahutamiseks laiendage need, et neil oleksid ühised nimetajad. 4\times 2^{2} ja 2 vähim ühiskordne on 16. Korrutage omavahel \frac{1}{2} ja \frac{8}{8}.
\frac{\left(\sqrt{2}\right)^{2}+8}{16}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Kuna murdudel \frac{\left(\sqrt{2}\right)^{2}}{16} ja \frac{8}{16} on sama nimetaja, liitke nende lugejad.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}}{18}+\frac{9}{18}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Avaldiste liitmiseks või lahutamiseks laiendage need, et neil oleksid ühised nimetajad. 3^{2} ja 2 vähim ühiskordne on 18. Korrutage omavahel \frac{4\left(\sqrt{3}\right)^{2}}{3^{2}} ja \frac{2}{2}. Korrutage omavahel \frac{1}{2} ja \frac{9}{9}.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Kuna murdudel \frac{2\times 4\left(\sqrt{3}\right)^{2}}{18} ja \frac{9}{18} on sama nimetaja, liitke nende lugejad.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-2\times 0^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Leidke \cos(90) väärtus trigonomeetriliste väärtuste tabelist.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-2\times 0+\frac{1}{24}\left(\cos(0)\right)^{2}
Arvutage 2 aste 0 ja leidke 0.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}\left(\cos(0)\right)^{2}
Korrutage 2 ja 0, et leida 0.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}\times 1^{2}
Leidke \cos(0) väärtus trigonomeetriliste väärtuste tabelist.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}\times 1
Arvutage 2 aste 1 ja leidke 1.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
Korrutage \frac{1}{24} ja 1, et leida \frac{1}{24}.
\frac{2}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
\sqrt{2} ruut on 2.
\frac{2}{4\times 4}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
Arvutage 2 aste 2 ja leidke 4.
\frac{2}{16}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
Korrutage 4 ja 4, et leida 16.
\frac{1}{8}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
Taandage murd \frac{2}{16} vähimale ühiskordsele, eraldades ja taandades arvu 2.
\frac{1}{8}+\frac{8\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
Korrutage 2 ja 4, et leida 8.
\frac{1}{8}+\frac{8\times 3+9}{18}-0+\frac{1}{24}
\sqrt{3} ruut on 3.
\frac{1}{8}+\frac{24+9}{18}-0+\frac{1}{24}
Korrutage 8 ja 3, et leida 24.
\frac{1}{8}+\frac{33}{18}-0+\frac{1}{24}
Liitke 24 ja 9, et leida 33.
\frac{1}{8}+\frac{11}{6}-0+\frac{1}{24}
Taandage murd \frac{33}{18} vähimale ühiskordsele, eraldades ja taandades arvu 3.
\frac{47}{24}-0+\frac{1}{24}
Liitke \frac{1}{8} ja \frac{11}{6}, et leida \frac{47}{24}.
\frac{47}{24}+\frac{1}{24}
Lahutage 0 väärtusest \frac{47}{24}, et leida \frac{47}{24}.
2
Liitke \frac{47}{24} ja \frac{1}{24}, et leida 2.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}