Lahendage ja leidke x
x = -\frac{4090}{3} = -1363\frac{1}{3} \approx -1363,333333333
Graafik
Jagama
Lõikelauale kopeeritud
\sqrt{\frac{6-3x}{4^{2}}}=16
Liitke 1 ja 5, et leida 6.
\sqrt{\frac{6-3x}{16}}=16
Arvutage 2 aste 4 ja leidke 16.
\sqrt{\frac{3}{8}-\frac{3}{16}x}=16
Jagage 6-3x iga liige 16-ga, et saada \frac{3}{8}-\frac{3}{16}x.
-\frac{3}{16}x+\frac{3}{8}=256
Tõstke võrrandi mõlemad pooled ruutu.
-\frac{3}{16}x+\frac{3}{8}-\frac{3}{8}=256-\frac{3}{8}
Lahutage võrrandi mõlemast poolest \frac{3}{8}.
-\frac{3}{16}x=256-\frac{3}{8}
\frac{3}{8} lahutamine iseendast annab tulemuseks 0.
-\frac{3}{16}x=\frac{2045}{8}
Lahutage \frac{3}{8} väärtusest 256.
\frac{-\frac{3}{16}x}{-\frac{3}{16}}=\frac{\frac{2045}{8}}{-\frac{3}{16}}
Jagage võrrandi mõlemad pooled väärtusega -\frac{3}{16}, mis on sama nagu mõlema poole korrutamine murru pöördväärtusega.
x=\frac{\frac{2045}{8}}{-\frac{3}{16}}
-\frac{3}{16}-ga jagamine võtab -\frac{3}{16}-ga korrutamise tagasi.
x=-\frac{4090}{3}
Jagage \frac{2045}{8} väärtusega -\frac{3}{16}, korrutades \frac{2045}{8} väärtuse -\frac{3}{16} pöördväärtusega.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}