Lahendage ja leidke x (complex solution)
\left\{\begin{matrix}x=-\sqrt{3-y^{2}}\text{; }x=\sqrt{3-y^{2}}\text{, }&arg(\sqrt{2\sqrt{3-y^{2}}+4}+\sqrt{-2\sqrt{3-y^{2}}+4})<\pi \\x=-\sqrt{2-2y^{2}}\text{; }x=\sqrt{2-2y^{2}}\text{, }&arg(\sqrt{-y^{2}+2\sqrt{2-2y^{2}}+3}+\sqrt{-y^{2}-2\sqrt{2-2y^{2}}+3})<\pi \text{ and }arg(y^{2}+1)<\pi \text{ and }y\neq -i\text{ and }y\neq i\end{matrix}\right,
Lahendage ja leidke y (complex solution)
\left\{\begin{matrix}y=-\sqrt{3-x^{2}}\text{; }y=\sqrt{3-x^{2}}\text{, }&arg(\sqrt{2x+4}+\sqrt{4-2x})<\pi \\y=-\frac{\sqrt{4-2x^{2}}}{2}\text{; }y=\frac{\sqrt{4-2x^{2}}}{2}\text{, }&arg(-\frac{x^{2}}{2}+2)<\pi \text{ and }x\neq -2\text{ and }x\neq 2\text{ and }arg(\sqrt{\frac{x^{2}}{2}+2x+2}+\sqrt{\frac{x^{2}}{2}-2x+2})<\pi \end{matrix}\right,
Lahendage ja leidke x
x=\sqrt{2-2y^{2}}
x=-\sqrt{2-2y^{2}}\text{, }|y|\leq 1
Lahendage ja leidke y
y=\frac{\sqrt{4-2x^{2}}}{2}
y=-\frac{\sqrt{4-2x^{2}}}{2}\text{, }|x|\leq \sqrt{2}
Graafik
Jagama
Lõikelauale kopeeritud
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}