Lahendage ja leidke x
x=y+2
Lahendage ja leidke y
y=x-2
Graafik
Jagama
Lõikelauale kopeeritud
\left(\sqrt{\left(7-x\right)^{2}+\left(1-y\right)^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Tõstke võrrandi mõlemad pooled ruutu.
\left(\sqrt{49-14x+x^{2}+\left(1-y\right)^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Kasutage kaksliikme \left(7-x\right)^{2} arendamiseks binoomvalemit \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
\left(\sqrt{49-14x+x^{2}+1-2y+y^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Kasutage kaksliikme \left(1-y\right)^{2} arendamiseks binoomvalemit \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
\left(\sqrt{50-14x+x^{2}-2y+y^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Liitke 49 ja 1, et leida 50.
50-14x+x^{2}-2y+y^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Arvutage 2 aste \sqrt{50-14x+x^{2}-2y+y^{2}} ja leidke 50-14x+x^{2}-2y+y^{2}.
50-14x+x^{2}-2y+y^{2}=\left(\sqrt{9-6x+x^{2}+\left(5-y\right)^{2}}\right)^{2}
Kasutage kaksliikme \left(3-x\right)^{2} arendamiseks binoomvalemit \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
50-14x+x^{2}-2y+y^{2}=\left(\sqrt{9-6x+x^{2}+25-10y+y^{2}}\right)^{2}
Kasutage kaksliikme \left(5-y\right)^{2} arendamiseks binoomvalemit \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
50-14x+x^{2}-2y+y^{2}=\left(\sqrt{34-6x+x^{2}-10y+y^{2}}\right)^{2}
Liitke 9 ja 25, et leida 34.
50-14x+x^{2}-2y+y^{2}=34-6x+x^{2}-10y+y^{2}
Arvutage 2 aste \sqrt{34-6x+x^{2}-10y+y^{2}} ja leidke 34-6x+x^{2}-10y+y^{2}.
50-14x+x^{2}-2y+y^{2}+6x=34+x^{2}-10y+y^{2}
Liitke 6x mõlemale poolele.
50-8x+x^{2}-2y+y^{2}=34+x^{2}-10y+y^{2}
Kombineerige -14x ja 6x, et leida -8x.
50-8x+x^{2}-2y+y^{2}-x^{2}=34-10y+y^{2}
Lahutage mõlemast poolest x^{2}.
50-8x-2y+y^{2}=34-10y+y^{2}
Kombineerige x^{2} ja -x^{2}, et leida 0.
-8x-2y+y^{2}=34-10y+y^{2}-50
Lahutage mõlemast poolest 50.
-8x-2y+y^{2}=-16-10y+y^{2}
Lahutage 50 väärtusest 34, et leida -16.
-8x+y^{2}=-16-10y+y^{2}+2y
Liitke 2y mõlemale poolele.
-8x+y^{2}=-16-8y+y^{2}
Kombineerige -10y ja 2y, et leida -8y.
-8x=-16-8y+y^{2}-y^{2}
Lahutage mõlemast poolest y^{2}.
-8x=-16-8y
Kombineerige y^{2} ja -y^{2}, et leida 0.
-8x=-8y-16
Võrrand on standardkujul.
\frac{-8x}{-8}=\frac{-8y-16}{-8}
Jagage mõlemad pooled -8-ga.
x=\frac{-8y-16}{-8}
-8-ga jagamine võtab -8-ga korrutamise tagasi.
x=y+2
Jagage -16-8y väärtusega -8.
\sqrt{\left(7-\left(y+2\right)\right)^{2}+\left(1-y\right)^{2}}=\sqrt{\left(3-\left(y+2\right)\right)^{2}+\left(5-y\right)^{2}}
Asendage x võrrandis \sqrt{\left(7-x\right)^{2}+\left(1-y\right)^{2}}=\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}} väärtusega y+2.
\left(2y^{2}-12y+26\right)^{\frac{1}{2}}=\left(2y^{2}-12y+26\right)^{\frac{1}{2}}
Lihtsustage. Väärtus x=y+2 vastab võrrandile.
x=y+2
Võrrandil \sqrt{\left(7-x\right)^{2}+\left(1-y\right)^{2}}=\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}} on ainus lahendus.
\left(\sqrt{\left(7-x\right)^{2}+\left(1-y\right)^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Tõstke võrrandi mõlemad pooled ruutu.
\left(\sqrt{49-14x+x^{2}+\left(1-y\right)^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Kasutage kaksliikme \left(7-x\right)^{2} arendamiseks binoomvalemit \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
\left(\sqrt{49-14x+x^{2}+1-2y+y^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Kasutage kaksliikme \left(1-y\right)^{2} arendamiseks binoomvalemit \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
\left(\sqrt{50-14x+x^{2}-2y+y^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Liitke 49 ja 1, et leida 50.
50-14x+x^{2}-2y+y^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Arvutage 2 aste \sqrt{50-14x+x^{2}-2y+y^{2}} ja leidke 50-14x+x^{2}-2y+y^{2}.
50-14x+x^{2}-2y+y^{2}=\left(\sqrt{9-6x+x^{2}+\left(5-y\right)^{2}}\right)^{2}
Kasutage kaksliikme \left(3-x\right)^{2} arendamiseks binoomvalemit \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
50-14x+x^{2}-2y+y^{2}=\left(\sqrt{9-6x+x^{2}+25-10y+y^{2}}\right)^{2}
Kasutage kaksliikme \left(5-y\right)^{2} arendamiseks binoomvalemit \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
50-14x+x^{2}-2y+y^{2}=\left(\sqrt{34-6x+x^{2}-10y+y^{2}}\right)^{2}
Liitke 9 ja 25, et leida 34.
50-14x+x^{2}-2y+y^{2}=34-6x+x^{2}-10y+y^{2}
Arvutage 2 aste \sqrt{34-6x+x^{2}-10y+y^{2}} ja leidke 34-6x+x^{2}-10y+y^{2}.
50-14x+x^{2}-2y+y^{2}+10y=34-6x+x^{2}+y^{2}
Liitke 10y mõlemale poolele.
50-14x+x^{2}+8y+y^{2}=34-6x+x^{2}+y^{2}
Kombineerige -2y ja 10y, et leida 8y.
50-14x+x^{2}+8y+y^{2}-y^{2}=34-6x+x^{2}
Lahutage mõlemast poolest y^{2}.
50-14x+x^{2}+8y=34-6x+x^{2}
Kombineerige y^{2} ja -y^{2}, et leida 0.
-14x+x^{2}+8y=34-6x+x^{2}-50
Lahutage mõlemast poolest 50.
-14x+x^{2}+8y=-16-6x+x^{2}
Lahutage 50 väärtusest 34, et leida -16.
x^{2}+8y=-16-6x+x^{2}+14x
Liitke 14x mõlemale poolele.
x^{2}+8y=-16+8x+x^{2}
Kombineerige -6x ja 14x, et leida 8x.
8y=-16+8x+x^{2}-x^{2}
Lahutage mõlemast poolest x^{2}.
8y=-16+8x
Kombineerige x^{2} ja -x^{2}, et leida 0.
8y=8x-16
Võrrand on standardkujul.
\frac{8y}{8}=\frac{8x-16}{8}
Jagage mõlemad pooled 8-ga.
y=\frac{8x-16}{8}
8-ga jagamine võtab 8-ga korrutamise tagasi.
y=x-2
Jagage -16+8x väärtusega 8.
\sqrt{\left(7-x\right)^{2}+\left(1-\left(x-2\right)\right)^{2}}=\sqrt{\left(3-x\right)^{2}+\left(5-\left(x-2\right)\right)^{2}}
Asendage y võrrandis \sqrt{\left(7-x\right)^{2}+\left(1-y\right)^{2}}=\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}} väärtusega x-2.
\left(2x^{2}-20x+58\right)^{\frac{1}{2}}=\left(2x^{2}-20x+58\right)^{\frac{1}{2}}
Lihtsustage. Väärtus y=x-2 vastab võrrandile.
y=x-2
Võrrandil \sqrt{\left(7-x\right)^{2}+\left(1-y\right)^{2}}=\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}} on ainus lahendus.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}