Lahendage ja leidke y (complex solution)
\left\{\begin{matrix}y=-\frac{2x\left(x-2\right)}{z}\text{, }&z\neq 0\text{ and }x\neq z\text{ and }x\neq -z\\y\in \mathrm{C}\text{, }&z=0\text{ and }x\neq 0\end{matrix}\right,
Lahendage ja leidke y
\left\{\begin{matrix}y=-\frac{2x\left(x-2\right)}{z}\text{, }&z\neq 0\text{ and }|x|\neq |z|\\y\in \mathrm{R}\text{, }&z=0\text{ and }x\neq 0\end{matrix}\right,
Lahendage ja leidke x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{4-2yz}}{2}+1\text{, }&\left(z\neq -\frac{y}{2}+2\text{ and }z\neq -\frac{y}{2}-2\right)\text{ or }\left(z\neq -\frac{y}{2}+2\text{ and }y\neq -2\text{ and }arg(-\frac{y}{2}-1)<\pi \right)\text{ or }\left(arg(2-y)\geq \pi \text{ and }y\neq 2\text{ and }z\neq -\frac{y}{2}-2\right)\text{ or }\left(arg(2-y)\geq \pi \text{ and }y\neq 2\text{ and }arg(-\frac{y}{2}-1)<\pi \right)\\x=-\frac{\sqrt{4-2yz}}{2}+1\text{, }&\left(z\neq 0\text{ and }z\neq -\frac{y}{2}+2\text{ and }arg(-\frac{y}{2}-1)\geq \pi \text{ and }z\neq -1\right)\text{ or }\left(z\neq 0\text{ and }z\neq -\frac{y}{2}+2\text{ and }arg(-\frac{y}{2}-1)\geq \pi \text{ and }y\neq -2\right)\text{ or }\left(z\neq 0\text{ and }z\neq -\frac{y}{2}+2\text{ and }z\neq -\frac{y}{2}-2\text{ and }z\neq -1\right)\text{ or }\left(z\neq 0\text{ and }z\neq -\frac{y}{2}+2\text{ and }z\neq -\frac{y}{2}-2\text{ and }y\neq -2\right)\text{ or }\left(z\neq 0\text{ and }z\neq 1\text{ and }arg(y-2)\geq \pi \text{ and }arg(-\frac{y}{2}-1)\geq \pi \text{ and }z\neq -1\right)\text{ or }\left(z\neq 0\text{ and }z\neq 1\text{ and }arg(y-2)\geq \pi \text{ and }arg(-\frac{y}{2}-1)\geq \pi \text{ and }y\neq -2\right)\text{ or }\left(z\neq 0\text{ and }z\neq 1\text{ and }arg(y-2)\geq \pi \text{ and }z\neq -\frac{y}{2}-2\text{ and }z\neq -1\right)\text{ or }\left(z\neq 0\text{ and }z\neq 1\text{ and }arg(y-2)\geq \pi \text{ and }z\neq -\frac{y}{2}-2\text{ and }y\neq -2\right)\text{ or }\left(z\neq 0\text{ and }y\neq 2\text{ and }arg(y-2)\geq \pi \text{ and }arg(-\frac{y}{2}-1)\geq \pi \text{ and }z\neq -1\right)\text{ or }\left(z\neq 0\text{ and }y\neq 2\text{ and }arg(y-2)\geq \pi \text{ and }arg(-\frac{y}{2}-1)\geq \pi \text{ and }y\neq -2\right)\text{ or }\left(z\neq 0\text{ and }y\neq 2\text{ and }arg(y-2)\geq \pi \text{ and }z\neq -\frac{y}{2}-2\text{ and }z\neq -1\right)\text{ or }\left(z\neq 0\text{ and }y\neq 2\text{ and }arg(y-2)\geq \pi \text{ and }z\neq -\frac{y}{2}-2\text{ and }y\neq -2\right)\\x\neq 0\text{, }&z=0\end{matrix}\right,
Jagama
Lõikelauale kopeeritud
\left(-x-z\right)\left(x+z\right)-\left(-x+z\right)\left(x-z\right)=-z\left(2x^{2}+zy\right)
Korrutage võrrandi mõlemad pooled arvuga \left(x-z\right)\left(-x-z\right), mis on arvu x-z,x+z,x^{2}-z^{2} vähim ühiskordne.
-x^{2}-2xz-z^{2}-\left(-x+z\right)\left(x-z\right)=-z\left(2x^{2}+zy\right)
Kasutage distributiivsusomadust, et korrutada -x-z ja x+z, ning koondage sarnased liikmed.
-x^{2}-2xz-z^{2}-\left(-x^{2}+2xz-z^{2}\right)=-z\left(2x^{2}+zy\right)
Kasutage distributiivsusomadust, et korrutada -x+z ja x-z, ning koondage sarnased liikmed.
-x^{2}-2xz-z^{2}+x^{2}-2xz+z^{2}=-z\left(2x^{2}+zy\right)
Avaldise "-x^{2}+2xz-z^{2}" vastandi leidmiseks tuleb leida iga liikme vastand.
-2xz-z^{2}-2xz+z^{2}=-z\left(2x^{2}+zy\right)
Kombineerige -x^{2} ja x^{2}, et leida 0.
-4xz-z^{2}+z^{2}=-z\left(2x^{2}+zy\right)
Kombineerige -2xz ja -2xz, et leida -4xz.
-4xz=-z\left(2x^{2}+zy\right)
Kombineerige -z^{2} ja z^{2}, et leida 0.
-4xz=-2zx^{2}-yz^{2}
Kasutage distributiivsusomadust, et korrutada -z ja 2x^{2}+zy.
-2zx^{2}-yz^{2}=-4xz
Vahetage pooled nii, et kõik muutuvad liikmed asuksid vasakul.
-yz^{2}=-4xz+2zx^{2}
Liitke 2zx^{2} mõlemale poolele.
\left(-z^{2}\right)y=2zx^{2}-4xz
Võrrand on standardkujul.
\frac{\left(-z^{2}\right)y}{-z^{2}}=\frac{2xz\left(x-2\right)}{-z^{2}}
Jagage mõlemad pooled -z^{2}-ga.
y=\frac{2xz\left(x-2\right)}{-z^{2}}
-z^{2}-ga jagamine võtab -z^{2}-ga korrutamise tagasi.
y=-\frac{2x\left(x-2\right)}{z}
Jagage 2xz\left(-2+x\right) väärtusega -z^{2}.
\left(-x-z\right)\left(x+z\right)-\left(-x+z\right)\left(x-z\right)=-z\left(2x^{2}+zy\right)
Korrutage võrrandi mõlemad pooled arvuga \left(x-z\right)\left(-x-z\right), mis on arvu x-z,x+z,x^{2}-z^{2} vähim ühiskordne.
-x^{2}-2xz-z^{2}-\left(-x+z\right)\left(x-z\right)=-z\left(2x^{2}+zy\right)
Kasutage distributiivsusomadust, et korrutada -x-z ja x+z, ning koondage sarnased liikmed.
-x^{2}-2xz-z^{2}-\left(-x^{2}+2xz-z^{2}\right)=-z\left(2x^{2}+zy\right)
Kasutage distributiivsusomadust, et korrutada -x+z ja x-z, ning koondage sarnased liikmed.
-x^{2}-2xz-z^{2}+x^{2}-2xz+z^{2}=-z\left(2x^{2}+zy\right)
Avaldise "-x^{2}+2xz-z^{2}" vastandi leidmiseks tuleb leida iga liikme vastand.
-2xz-z^{2}-2xz+z^{2}=-z\left(2x^{2}+zy\right)
Kombineerige -x^{2} ja x^{2}, et leida 0.
-4xz-z^{2}+z^{2}=-z\left(2x^{2}+zy\right)
Kombineerige -2xz ja -2xz, et leida -4xz.
-4xz=-z\left(2x^{2}+zy\right)
Kombineerige -z^{2} ja z^{2}, et leida 0.
-4xz=-2zx^{2}-yz^{2}
Kasutage distributiivsusomadust, et korrutada -z ja 2x^{2}+zy.
-2zx^{2}-yz^{2}=-4xz
Vahetage pooled nii, et kõik muutuvad liikmed asuksid vasakul.
-yz^{2}=-4xz+2zx^{2}
Liitke 2zx^{2} mõlemale poolele.
\left(-z^{2}\right)y=2zx^{2}-4xz
Võrrand on standardkujul.
\frac{\left(-z^{2}\right)y}{-z^{2}}=\frac{2xz\left(x-2\right)}{-z^{2}}
Jagage mõlemad pooled -z^{2}-ga.
y=\frac{2xz\left(x-2\right)}{-z^{2}}
-z^{2}-ga jagamine võtab -z^{2}-ga korrutamise tagasi.
y=-\frac{2x\left(x-2\right)}{z}
Jagage 2xz\left(-2+x\right) väärtusega -z^{2}.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}