Arvuta
\frac{1}{2}=0,5
Lahuta teguriteks
\frac{1}{2} = 0,5
Jagama
Lõikelauale kopeeritud
\frac{2+\left(\frac{\sqrt{6}+\sqrt{2}}{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
\sqrt{2} ruut on 2.
\frac{2+\frac{\left(\sqrt{6}+\sqrt{2}\right)^{2}}{2^{2}}-\left(\sqrt{3}\right)^{2}}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
Avaldise \frac{\sqrt{6}+\sqrt{2}}{2} astendamiseks astendage nii lugeja kui ka nimetaja ning seejärel tehke jagamistehe.
\frac{\frac{2\times 2^{2}}{2^{2}}+\frac{\left(\sqrt{6}+\sqrt{2}\right)^{2}}{2^{2}}-\left(\sqrt{3}\right)^{2}}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
Avaldiste liitmiseks või lahutamiseks laiendage need, et neil oleksid ühised nimetajad. Korrutage omavahel 2 ja \frac{2^{2}}{2^{2}}.
\frac{\frac{2\times 2^{2}+\left(\sqrt{6}+\sqrt{2}\right)^{2}}{2^{2}}-\left(\sqrt{3}\right)^{2}}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
Kuna murdudel \frac{2\times 2^{2}}{2^{2}} ja \frac{\left(\sqrt{6}+\sqrt{2}\right)^{2}}{2^{2}} on sama nimetaja, liitke nende lugejad.
\frac{\frac{8+\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{2^{2}}-\left(\sqrt{3}\right)^{2}}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
Tehke korrutustehted võrrandis 2\times 2^{2}+\left(\sqrt{6}+\sqrt{2}\right)^{2}.
\frac{\frac{16+4\sqrt{3}}{2^{2}}-\left(\sqrt{3}\right)^{2}}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
Tehke arvutustehted avaldises 8+\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}.
\frac{\frac{16+4\sqrt{3}}{2^{2}}-3}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
\sqrt{3} ruut on 3.
\frac{\frac{16+4\sqrt{3}}{2^{2}}-\frac{3\times 2^{2}}{2^{2}}}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
Avaldiste liitmiseks või lahutamiseks laiendage need, et neil oleksid ühised nimetajad. Korrutage omavahel 3 ja \frac{2^{2}}{2^{2}}.
\frac{\frac{16+4\sqrt{3}-3\times 2^{2}}{2^{2}}}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
Kuna murdudel \frac{16+4\sqrt{3}}{2^{2}} ja \frac{3\times 2^{2}}{2^{2}} on sama nimetaja, lahutage nende lugejad.
\frac{\frac{16+4\sqrt{3}-12}{2^{2}}}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
Tehke korrutustehted võrrandis 16+4\sqrt{3}-3\times 2^{2}.
\frac{\frac{4+4\sqrt{3}}{2^{2}}}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
Tehke arvutustehted avaldises 16+4\sqrt{3}-12.
\frac{\frac{4+4\sqrt{3}}{2^{2}}}{\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2}}
Taandage 2 ja 2.
\frac{\frac{4+4\sqrt{3}}{2^{2}}\sqrt{2}}{\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{2}\right)^{2}}
Ratsionaliseerige korrutades lugeja ja \sqrt{2} nimetaja \frac{\frac{4+4\sqrt{3}}{2^{2}}}{\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2}} nimetaja.
\frac{\frac{4+4\sqrt{3}}{2^{2}}\sqrt{2}}{\left(\sqrt{6}+\sqrt{2}\right)\times 2}
\sqrt{2} ruut on 2.
\frac{\frac{4+4\sqrt{3}}{4}\sqrt{2}}{\left(\sqrt{6}+\sqrt{2}\right)\times 2}
Arvutage 2 aste 2 ja leidke 4.
\frac{\left(1+\sqrt{3}\right)\sqrt{2}}{\left(\sqrt{6}+\sqrt{2}\right)\times 2}
Jagage 4+4\sqrt{3} iga liige 4-ga, et saada 1+\sqrt{3}.
\frac{\sqrt{2}+\sqrt{3}\sqrt{2}}{\left(\sqrt{6}+\sqrt{2}\right)\times 2}
Kasutage distributiivsusomadust, et korrutada 1+\sqrt{3} ja \sqrt{2}.
\frac{\sqrt{2}+\sqrt{6}}{\left(\sqrt{6}+\sqrt{2}\right)\times 2}
\sqrt{3} ja \sqrt{2} korrutage numbrid, mis on sama juur.
\frac{\sqrt{2}+\sqrt{6}}{2\sqrt{6}+2\sqrt{2}}
Kasutage distributiivsusomadust, et korrutada \sqrt{6}+\sqrt{2} ja 2.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{\left(2\sqrt{6}+2\sqrt{2}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}
Ratsionaliseerige korrutades lugeja ja 2\sqrt{6}-2\sqrt{2} nimetaja \frac{\sqrt{2}+\sqrt{6}}{2\sqrt{6}+2\sqrt{2}} nimetaja.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{\left(2\sqrt{6}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
Mõelge valemile \left(2\sqrt{6}+2\sqrt{2}\right)\left(2\sqrt{6}-2\sqrt{2}\right). Korrutustehte saab ruutude vaheks teisendada järgmise reegli abil: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{2^{2}\left(\sqrt{6}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
Laiendage \left(2\sqrt{6}\right)^{2}.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{4\left(\sqrt{6}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
Arvutage 2 aste 2 ja leidke 4.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{4\times 6-\left(2\sqrt{2}\right)^{2}}
\sqrt{6} ruut on 6.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{24-\left(2\sqrt{2}\right)^{2}}
Korrutage 4 ja 6, et leida 24.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{24-2^{2}\left(\sqrt{2}\right)^{2}}
Laiendage \left(2\sqrt{2}\right)^{2}.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{24-4\left(\sqrt{2}\right)^{2}}
Arvutage 2 aste 2 ja leidke 4.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{24-4\times 2}
\sqrt{2} ruut on 2.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{24-8}
Korrutage 4 ja 2, et leida 8.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{16}
Lahutage 8 väärtusest 24, et leida 16.
\frac{-2\left(\sqrt{2}\right)^{2}+2\left(\sqrt{6}\right)^{2}}{16}
Kasutage distributiivsusomadust, et korrutada \sqrt{2}+\sqrt{6} ja 2\sqrt{6}-2\sqrt{2}, ning koondage sarnased liikmed.
\frac{-2\times 2+2\left(\sqrt{6}\right)^{2}}{16}
\sqrt{2} ruut on 2.
\frac{-4+2\left(\sqrt{6}\right)^{2}}{16}
Korrutage -2 ja 2, et leida -4.
\frac{-4+2\times 6}{16}
\sqrt{6} ruut on 6.
\frac{-4+12}{16}
Korrutage 2 ja 6, et leida 12.
\frac{8}{16}
Liitke -4 ja 12, et leida 8.
\frac{1}{2}
Taandage murd \frac{8}{16} vähimale ühiskordsele, eraldades ja taandades arvu 8.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}