Arvuta
z\left(z-6\right)
Laienda
z^{2}-6z
Jagama
Lõikelauale kopeeritud
\frac{\left(z+6\right)\left(z^{2}-6z+36\right)}{\left(z-6\right)\left(z+6\right)z^{5}}\times \frac{z^{8}-12z^{7}+36z^{6}}{z^{2}-6z+36}
Kui avaldised pole tehtes \frac{z^{3}+216}{z^{7}-36z^{5}} veel teguriteks lahutatud, tehke seda.
\frac{z^{2}-6z+36}{\left(z-6\right)z^{5}}\times \frac{z^{8}-12z^{7}+36z^{6}}{z^{2}-6z+36}
Taandage z+6 nii lugejas kui ka nimetajas.
\frac{\left(z^{2}-6z+36\right)\left(z^{8}-12z^{7}+36z^{6}\right)}{\left(z-6\right)z^{5}\left(z^{2}-6z+36\right)}
Korrutage omavahel \frac{z^{2}-6z+36}{\left(z-6\right)z^{5}} ja \frac{z^{8}-12z^{7}+36z^{6}}{z^{2}-6z+36}. Seejärel taandage murd võimaluse korral vähimale ühiskordsele.
\frac{z^{8}-12z^{7}+36z^{6}}{\left(z-6\right)z^{5}}
Taandage z^{2}-6z+36 nii lugejas kui ka nimetajas.
\frac{\left(z-6\right)^{2}z^{6}}{\left(z-6\right)z^{5}}
Kui avaldised pole juba teguriteks lahutatud, tehke seda.
z\left(z-6\right)
Taandage \left(z-6\right)z^{5} nii lugejas kui ka nimetajas.
z^{2}-6z
Laiendage avaldist.
\frac{\left(z+6\right)\left(z^{2}-6z+36\right)}{\left(z-6\right)\left(z+6\right)z^{5}}\times \frac{z^{8}-12z^{7}+36z^{6}}{z^{2}-6z+36}
Kui avaldised pole tehtes \frac{z^{3}+216}{z^{7}-36z^{5}} veel teguriteks lahutatud, tehke seda.
\frac{z^{2}-6z+36}{\left(z-6\right)z^{5}}\times \frac{z^{8}-12z^{7}+36z^{6}}{z^{2}-6z+36}
Taandage z+6 nii lugejas kui ka nimetajas.
\frac{\left(z^{2}-6z+36\right)\left(z^{8}-12z^{7}+36z^{6}\right)}{\left(z-6\right)z^{5}\left(z^{2}-6z+36\right)}
Korrutage omavahel \frac{z^{2}-6z+36}{\left(z-6\right)z^{5}} ja \frac{z^{8}-12z^{7}+36z^{6}}{z^{2}-6z+36}. Seejärel taandage murd võimaluse korral vähimale ühiskordsele.
\frac{z^{8}-12z^{7}+36z^{6}}{\left(z-6\right)z^{5}}
Taandage z^{2}-6z+36 nii lugejas kui ka nimetajas.
\frac{\left(z-6\right)^{2}z^{6}}{\left(z-6\right)z^{5}}
Kui avaldised pole juba teguriteks lahutatud, tehke seda.
z\left(z-6\right)
Taandage \left(z-6\right)z^{5} nii lugejas kui ka nimetajas.
z^{2}-6z
Laiendage avaldist.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}