Liigu edasi põhisisu juurde
Lahendage ja leidke d
Tick mark Image

Sarnased probleemid veebiotsingust

Jagama

dx\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1+\sin(x)}{\cos(x)})=\cos(x)
Muutuja d ei tohi võrduda väärtusega 0, kuna nulliga jagamist pole määratletud. Korrutage võrrandi mõlemad pooled dx-ga.
x\left(-\frac{\left(\sin(x)+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(\cos(x))}{\left(\cos(x)\right)^{2}}+\frac{\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))}{\cos(x)}\right)d=\cos(x)
Võrrand on standardkujul.
\frac{x\left(-\frac{\left(\sin(x)+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(\cos(x))}{\left(\cos(x)\right)^{2}}+\frac{\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))}{\cos(x)}\right)d}{x\left(-\frac{\left(\sin(x)+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(\cos(x))}{\left(\cos(x)\right)^{2}}+\frac{\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))}{\cos(x)}\right)}=\frac{\cos(x)}{x\left(-\frac{\left(\sin(x)+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(\cos(x))}{\left(\cos(x)\right)^{2}}+\frac{\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))}{\cos(x)}\right)}
Jagage mõlemad pooled x\left(\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))\left(\cos(x)\right)^{-1}-\left(1+\sin(x)\right)\frac{\mathrm{d}}{\mathrm{d}x}(\cos(x))\left(\cos(x)\right)^{-2}\right)-ga.
d=\frac{\cos(x)}{x\left(-\frac{\left(\sin(x)+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(\cos(x))}{\left(\cos(x)\right)^{2}}+\frac{\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))}{\cos(x)}\right)}
x\left(\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))\left(\cos(x)\right)^{-1}-\left(1+\sin(x)\right)\frac{\mathrm{d}}{\mathrm{d}x}(\cos(x))\left(\cos(x)\right)^{-2}\right)-ga jagamine võtab x\left(\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))\left(\cos(x)\right)^{-1}-\left(1+\sin(x)\right)\frac{\mathrm{d}}{\mathrm{d}x}(\cos(x))\left(\cos(x)\right)^{-2}\right)-ga korrutamise tagasi.
d=\frac{\left(\cos(x)\right)^{3}}{x\left(\sin(x)+1\right)}
Jagage \cos(x) väärtusega x\left(\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))\left(\cos(x)\right)^{-1}-\left(1+\sin(x)\right)\frac{\mathrm{d}}{\mathrm{d}x}(\cos(x))\left(\cos(x)\right)^{-2}\right).
d=\frac{\left(\cos(x)\right)^{3}}{x\left(\sin(x)+1\right)}\text{, }d\neq 0
Muutuja d ei tohi võrduda väärtusega 0.