Lahendage ja leidke a
a=\frac{12}{q^{2}+q+1}
q\neq 1
Lahendage ja leidke q
\left\{\begin{matrix}q=\frac{-\sqrt{-3+\frac{48}{a}}-1}{2}\text{, }&a>0\text{ and }a\leq 16\\q=\frac{\sqrt{-3+\frac{48}{a}}-1}{2}\text{, }&a\neq 4\text{ and }a\leq 16\text{ and }a>0\end{matrix}\right,
Jagama
Lõikelauale kopeeritud
a\left(1-q^{3}\right)=12\left(-q+1\right)
Korrutage võrrandi mõlemad pooled -q+1-ga.
a-aq^{3}=12\left(-q+1\right)
Kasutage distributiivsusomadust, et korrutada a ja 1-q^{3}.
a-aq^{3}=-12q+12
Kasutage distributiivsusomadust, et korrutada 12 ja -q+1.
\left(1-q^{3}\right)a=-12q+12
Kombineerige kõik liikmed, mis sisaldavad a.
\left(1-q^{3}\right)a=12-12q
Võrrand on standardkujul.
\frac{\left(1-q^{3}\right)a}{1-q^{3}}=\frac{12-12q}{1-q^{3}}
Jagage mõlemad pooled 1-q^{3}-ga.
a=\frac{12-12q}{1-q^{3}}
1-q^{3}-ga jagamine võtab 1-q^{3}-ga korrutamise tagasi.
a=\frac{12}{q^{2}+q+1}
Jagage -12q+12 väärtusega 1-q^{3}.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}