Arvuta
\frac{28\sqrt{6}}{43}\approx 1,595016577
Jagama
Lõikelauale kopeeritud
\frac{\left(7+\sqrt{6}\right)\left(7+\sqrt{6}\right)}{\left(7-\sqrt{6}\right)\left(7+\sqrt{6}\right)}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Ratsionaliseerige korrutades lugeja ja 7+\sqrt{6} nimetaja \frac{7+\sqrt{6}}{7-\sqrt{6}} nimetaja.
\frac{\left(7+\sqrt{6}\right)\left(7+\sqrt{6}\right)}{7^{2}-\left(\sqrt{6}\right)^{2}}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Mõelge valemile \left(7-\sqrt{6}\right)\left(7+\sqrt{6}\right). Korrutustehte saab ruutude vaheks teisendada järgmise reegli abil: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(7+\sqrt{6}\right)\left(7+\sqrt{6}\right)}{49-6}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Tõstke 7 ruutu. Tõstke \sqrt{6} ruutu.
\frac{\left(7+\sqrt{6}\right)\left(7+\sqrt{6}\right)}{43}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Lahutage 6 väärtusest 49, et leida 43.
\frac{\left(7+\sqrt{6}\right)^{2}}{43}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Korrutage 7+\sqrt{6} ja 7+\sqrt{6}, et leida \left(7+\sqrt{6}\right)^{2}.
\frac{49+14\sqrt{6}+\left(\sqrt{6}\right)^{2}}{43}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Kasutage kaksliikme \left(7+\sqrt{6}\right)^{2} arendamiseks binoomvalemit \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
\frac{49+14\sqrt{6}+6}{43}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
\sqrt{6} ruut on 6.
\frac{55+14\sqrt{6}}{43}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Liitke 49 ja 6, et leida 55.
\frac{55+14\sqrt{6}}{43}-\frac{\left(7-\sqrt{6}\right)\left(7-\sqrt{6}\right)}{\left(7+\sqrt{6}\right)\left(7-\sqrt{6}\right)}
Ratsionaliseerige korrutades lugeja ja 7-\sqrt{6} nimetaja \frac{7-\sqrt{6}}{7+\sqrt{6}} nimetaja.
\frac{55+14\sqrt{6}}{43}-\frac{\left(7-\sqrt{6}\right)\left(7-\sqrt{6}\right)}{7^{2}-\left(\sqrt{6}\right)^{2}}
Mõelge valemile \left(7+\sqrt{6}\right)\left(7-\sqrt{6}\right). Korrutustehte saab ruutude vaheks teisendada järgmise reegli abil: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{55+14\sqrt{6}}{43}-\frac{\left(7-\sqrt{6}\right)\left(7-\sqrt{6}\right)}{49-6}
Tõstke 7 ruutu. Tõstke \sqrt{6} ruutu.
\frac{55+14\sqrt{6}}{43}-\frac{\left(7-\sqrt{6}\right)\left(7-\sqrt{6}\right)}{43}
Lahutage 6 väärtusest 49, et leida 43.
\frac{55+14\sqrt{6}}{43}-\frac{\left(7-\sqrt{6}\right)^{2}}{43}
Korrutage 7-\sqrt{6} ja 7-\sqrt{6}, et leida \left(7-\sqrt{6}\right)^{2}.
\frac{55+14\sqrt{6}}{43}-\frac{49-14\sqrt{6}+\left(\sqrt{6}\right)^{2}}{43}
Kasutage kaksliikme \left(7-\sqrt{6}\right)^{2} arendamiseks binoomvalemit \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
\frac{55+14\sqrt{6}}{43}-\frac{49-14\sqrt{6}+6}{43}
\sqrt{6} ruut on 6.
\frac{55+14\sqrt{6}}{43}-\frac{55-14\sqrt{6}}{43}
Liitke 49 ja 6, et leida 55.
\frac{55+14\sqrt{6}-\left(55-14\sqrt{6}\right)}{43}
Kuna murdudel \frac{55+14\sqrt{6}}{43} ja \frac{55-14\sqrt{6}}{43} on sama nimetaja, lahutage nende lugejad.
\frac{55+14\sqrt{6}-55+14\sqrt{6}}{43}
Tehke korrutustehted võrrandis 55+14\sqrt{6}-\left(55-14\sqrt{6}\right).
\frac{28\sqrt{6}}{43}
Tehke arvutustehted avaldises 55+14\sqrt{6}-55+14\sqrt{6}.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}