Lahendage ja leidke x
x=4
x=0
Graafik
Jagama
Lõikelauale kopeeritud
4x-1=\left(x+1\right)x+\left(x+1\right)\left(-1\right)
Muutuja x ei tohi võrduda väärtusega -1, kuna nulliga jagamist pole määratletud. Korrutage võrrandi mõlemad pooled x+1-ga.
4x-1=x^{2}+x+\left(x+1\right)\left(-1\right)
Kasutage distributiivsusomadust, et korrutada x+1 ja x.
4x-1=x^{2}+x-x-1
Kasutage distributiivsusomadust, et korrutada x+1 ja -1.
4x-1=x^{2}-1
Kombineerige x ja -x, et leida 0.
4x-1-x^{2}=-1
Lahutage mõlemast poolest x^{2}.
4x-1-x^{2}+1=0
Liitke 1 mõlemale poolele.
4x-x^{2}=0
Liitke -1 ja 1, et leida 0.
-x^{2}+4x=0
Kõiki võrrandeid, mis on kujul ax^{2}+bx+c=0, saab lahendada ruutvõrrandi valemiga: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ruutvõrrandi valem annab kaks lahendit: ühe, kui ± on liitmine, ja teise, kui see on lahutamine.
x=\frac{-4±\sqrt{4^{2}}}{2\left(-1\right)}
See võrrand on standardkujul: ax^{2}+bx+c=0. Asendage ruutvõrrandis \frac{-b±\sqrt{b^{2}-4ac}}{2a} väärtus a väärtusega -1, b väärtusega 4 ja c väärtusega 0.
x=\frac{-4±4}{2\left(-1\right)}
Leidke 4^{2} ruutjuur.
x=\frac{-4±4}{-2}
Korrutage omavahel 2 ja -1.
x=\frac{0}{-2}
Nüüd lahendage võrrand x=\frac{-4±4}{-2}, kui ± on pluss. Liitke -4 ja 4.
x=0
Jagage 0 väärtusega -2.
x=-\frac{8}{-2}
Nüüd lahendage võrrand x=\frac{-4±4}{-2}, kui ± on miinus. Lahutage 4 väärtusest -4.
x=4
Jagage -8 väärtusega -2.
x=0 x=4
Võrrand on nüüd lahendatud.
4x-1=\left(x+1\right)x+\left(x+1\right)\left(-1\right)
Muutuja x ei tohi võrduda väärtusega -1, kuna nulliga jagamist pole määratletud. Korrutage võrrandi mõlemad pooled x+1-ga.
4x-1=x^{2}+x+\left(x+1\right)\left(-1\right)
Kasutage distributiivsusomadust, et korrutada x+1 ja x.
4x-1=x^{2}+x-x-1
Kasutage distributiivsusomadust, et korrutada x+1 ja -1.
4x-1=x^{2}-1
Kombineerige x ja -x, et leida 0.
4x-1-x^{2}=-1
Lahutage mõlemast poolest x^{2}.
4x-x^{2}=-1+1
Liitke 1 mõlemale poolele.
4x-x^{2}=0
Liitke -1 ja 1, et leida 0.
-x^{2}+4x=0
Ruutvõrrandite (nagu see siin) lahendamiseks tuleb mõlemad pooled ruutu tõsta. Ruutu tõstmiseks peab võrrand olema esmalt kujul x^{2}+bx=c.
\frac{-x^{2}+4x}{-1}=\frac{0}{-1}
Jagage mõlemad pooled -1-ga.
x^{2}+\frac{4}{-1}x=\frac{0}{-1}
-1-ga jagamine võtab -1-ga korrutamise tagasi.
x^{2}-4x=\frac{0}{-1}
Jagage 4 väärtusega -1.
x^{2}-4x=0
Jagage 0 väärtusega -1.
x^{2}-4x+\left(-2\right)^{2}=\left(-2\right)^{2}
Jagage liikme x kordaja -4 2-ga, et leida -2. Seejärel liitke -2 ruut võrrandi mõlemale poolele. Selle tehtega saab võrrandi vasakust poolest täisruut.
x^{2}-4x+4=4
Tõstke -2 ruutu.
\left(x-2\right)^{2}=4
Lahutage x^{2}-4x+4. Kui x^{2}+bx+c on üldiselt täiuslik ruut, saab selle alati teguriteks lahutada kui \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{4}
Leidke võrrandi mõlema poole ruutjuur.
x-2=2 x-2=-2
Lihtsustage.
x=4 x=0
Liitke võrrandi mõlema poolega 2.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}