Arvuta
15\sqrt{5}+19\sqrt{2}\approx 60,411077348
Lahuta teguriteks
15 \sqrt{5} + 19 \sqrt{2} = 60,411077348
Jagama
Lõikelauale kopeeritud
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{\left(2\sqrt{10}-3\right)\left(2\sqrt{10}+3\right)}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
Ratsionaliseerige korrutades lugeja ja 2\sqrt{10}+3 nimetaja \frac{31\sqrt{2}+31\sqrt{5}}{2\sqrt{10}-3} nimetaja.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{\left(2\sqrt{10}\right)^{2}-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
Mõelge valemile \left(2\sqrt{10}-3\right)\left(2\sqrt{10}+3\right). Korrutustehte saab ruutude vaheks teisendada järgmise reegli abil: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{2^{2}\left(\sqrt{10}\right)^{2}-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
Laiendage \left(2\sqrt{10}\right)^{2}.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{4\left(\sqrt{10}\right)^{2}-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
Arvutage 2 aste 2 ja leidke 4.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{4\times 10-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
\sqrt{10} ruut on 10.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{40-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
Korrutage 4 ja 10, et leida 40.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{40-9}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
Arvutage 2 aste 3 ja leidke 9.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
Lahutage 9 väärtusest 40, et leida 31.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{\left(3-2\sqrt{10}\right)\left(3+2\sqrt{10}\right)}
Ratsionaliseerige korrutades lugeja ja 3+2\sqrt{10} nimetaja \frac{62\sqrt{2}}{3-2\sqrt{10}} nimetaja.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{3^{2}-\left(-2\sqrt{10}\right)^{2}}
Mõelge valemile \left(3-2\sqrt{10}\right)\left(3+2\sqrt{10}\right). Korrutustehte saab ruutude vaheks teisendada järgmise reegli abil: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-\left(-2\sqrt{10}\right)^{2}}
Arvutage 2 aste 3 ja leidke 9.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-\left(-2\right)^{2}\left(\sqrt{10}\right)^{2}}
Laiendage \left(-2\sqrt{10}\right)^{2}.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-4\left(\sqrt{10}\right)^{2}}
Arvutage 2 aste -2 ja leidke 4.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-4\times 10}
\sqrt{10} ruut on 10.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-40}
Korrutage 4 ja 10, et leida 40.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{-31}
Lahutage 40 väärtusest 9, et leida -31.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\left(-2\sqrt{2}\left(3+2\sqrt{10}\right)\right)
Jagage 62\sqrt{2}\left(3+2\sqrt{10}\right) väärtusega -31, et leida -2\sqrt{2}\left(3+2\sqrt{10}\right).
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Arvu -2\sqrt{2}\left(3+2\sqrt{10}\right) vastand on 2\sqrt{2}\left(3+2\sqrt{10}\right).
\frac{62\sqrt{10}\sqrt{2}+93\sqrt{2}+62\sqrt{5}\sqrt{10}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Rakendage distributiivsusomadus, korrutades avaldise 31\sqrt{2}+31\sqrt{5} iga liikme avaldise 2\sqrt{10}+3 iga liikmega.
\frac{62\sqrt{2}\sqrt{5}\sqrt{2}+93\sqrt{2}+62\sqrt{5}\sqrt{10}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Tegurda 10=2\times 5. Kirjutage \sqrt{2\times 5} toote juured, kui see ruut \sqrt{2}\sqrt{5}.
\frac{62\times 2\sqrt{5}+93\sqrt{2}+62\sqrt{5}\sqrt{10}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Korrutage \sqrt{2} ja \sqrt{2}, et leida 2.
\frac{124\sqrt{5}+93\sqrt{2}+62\sqrt{5}\sqrt{10}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Korrutage 62 ja 2, et leida 124.
\frac{124\sqrt{5}+93\sqrt{2}+62\sqrt{5}\sqrt{5}\sqrt{2}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Tegurda 10=5\times 2. Kirjutage \sqrt{5\times 2} toote juured, kui see ruut \sqrt{5}\sqrt{2}.
\frac{124\sqrt{5}+93\sqrt{2}+62\times 5\sqrt{2}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Korrutage \sqrt{5} ja \sqrt{5}, et leida 5.
\frac{124\sqrt{5}+93\sqrt{2}+310\sqrt{2}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Korrutage 62 ja 5, et leida 310.
\frac{124\sqrt{5}+403\sqrt{2}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Kombineerige 93\sqrt{2} ja 310\sqrt{2}, et leida 403\sqrt{2}.
\frac{217\sqrt{5}+403\sqrt{2}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Kombineerige 124\sqrt{5} ja 93\sqrt{5}, et leida 217\sqrt{5}.
7\sqrt{5}+13\sqrt{2}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Jagage 217\sqrt{5}+403\sqrt{2} iga liige 31-ga, et saada 7\sqrt{5}+13\sqrt{2}.
7\sqrt{5}+13\sqrt{2}+6\sqrt{2}+4\sqrt{10}\sqrt{2}
Kasutage distributiivsusomadust, et korrutada 2\sqrt{2} ja 3+2\sqrt{10}.
7\sqrt{5}+13\sqrt{2}+6\sqrt{2}+4\sqrt{2}\sqrt{5}\sqrt{2}
Tegurda 10=2\times 5. Kirjutage \sqrt{2\times 5} toote juured, kui see ruut \sqrt{2}\sqrt{5}.
7\sqrt{5}+13\sqrt{2}+6\sqrt{2}+4\times 2\sqrt{5}
Korrutage \sqrt{2} ja \sqrt{2}, et leida 2.
7\sqrt{5}+13\sqrt{2}+6\sqrt{2}+8\sqrt{5}
Korrutage 4 ja 2, et leida 8.
7\sqrt{5}+19\sqrt{2}+8\sqrt{5}
Kombineerige 13\sqrt{2} ja 6\sqrt{2}, et leida 19\sqrt{2}.
15\sqrt{5}+19\sqrt{2}
Kombineerige 7\sqrt{5} ja 8\sqrt{5}, et leida 15\sqrt{5}.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}