Liigu edasi põhisisu juurde
Arvuta
Tick mark Image
Lahuta teguriteks
Tick mark Image

Sarnased probleemid veebiotsingust

Jagama

\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{3}+\sqrt{2}\right)\left(2\sqrt{3}-\sqrt{2}\right)}
Ratsionaliseerige korrutades lugeja ja 2\sqrt{3}-\sqrt{2} nimetaja \frac{2\sqrt{3}-\sqrt{2}}{2\sqrt{3}+\sqrt{2}} nimetaja.
\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Mõelge valemile \left(2\sqrt{3}+\sqrt{2}\right)\left(2\sqrt{3}-\sqrt{2}\right). Korrutustehte saab ruutude vaheks teisendada järgmise reegli abil: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{3}-\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Korrutage 2\sqrt{3}-\sqrt{2} ja 2\sqrt{3}-\sqrt{2}, et leida \left(2\sqrt{3}-\sqrt{2}\right)^{2}.
\frac{4\left(\sqrt{3}\right)^{2}-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Kasutage kaksliikme \left(2\sqrt{3}-\sqrt{2}\right)^{2} arendamiseks binoomvalemit \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
\frac{4\times 3-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
\sqrt{3} ruut on 3.
\frac{12-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Korrutage 4 ja 3, et leida 12.
\frac{12-4\sqrt{6}+\left(\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
\sqrt{3} ja \sqrt{2} korrutage numbrid, mis on sama juur.
\frac{12-4\sqrt{6}+2}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
\sqrt{2} ruut on 2.
\frac{14-4\sqrt{6}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Liitke 12 ja 2, et leida 14.
\frac{14-4\sqrt{6}}{2^{2}\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Laiendage \left(2\sqrt{3}\right)^{2}.
\frac{14-4\sqrt{6}}{4\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Arvutage 2 aste 2 ja leidke 4.
\frac{14-4\sqrt{6}}{4\times 3-\left(\sqrt{2}\right)^{2}}
\sqrt{3} ruut on 3.
\frac{14-4\sqrt{6}}{12-\left(\sqrt{2}\right)^{2}}
Korrutage 4 ja 3, et leida 12.
\frac{14-4\sqrt{6}}{12-2}
\sqrt{2} ruut on 2.
\frac{14-4\sqrt{6}}{10}
Lahutage 2 väärtusest 12, et leida 10.