Arvuta
\frac{1}{20}=0,05
Lahuta teguriteks
\frac{1}{2 ^ {2} \cdot 5} = 0,05
Jagama
Lõikelauale kopeeritud
\frac{1}{5}\times \frac{\frac{1}{3}}{\frac{3}{6}+\frac{5}{6}}
2 ja 6 vähim ühiskordne on 6. Teisendage \frac{1}{2} ja \frac{5}{6} murdarvudeks, mille nimetaja on 6.
\frac{1}{5}\times \frac{\frac{1}{3}}{\frac{3+5}{6}}
Kuna murdudel \frac{3}{6} ja \frac{5}{6} on sama nimetaja, liitke nende lugejad.
\frac{1}{5}\times \frac{\frac{1}{3}}{\frac{8}{6}}
Liitke 3 ja 5, et leida 8.
\frac{1}{5}\times \frac{\frac{1}{3}}{\frac{4}{3}}
Taandage murd \frac{8}{6} vähimale ühiskordsele, eraldades ja taandades arvu 2.
\frac{1}{5}\times \frac{1}{3}\times \frac{3}{4}
Jagage \frac{1}{3} väärtusega \frac{4}{3}, korrutades \frac{1}{3} väärtuse \frac{4}{3} pöördväärtusega.
\frac{1}{5}\times \frac{1\times 3}{3\times 4}
Korrutage omavahel \frac{1}{3} ja \frac{3}{4}. Seejärel taandage murd võimaluse korral vähimale ühiskordsele.
\frac{1}{5}\times \frac{1}{4}
Taandage 3 nii lugejas kui ka nimetajas.
\frac{1\times 1}{5\times 4}
Korrutage omavahel \frac{1}{5} ja \frac{1}{4}. Seejärel taandage murd võimaluse korral vähimale ühiskordsele.
\frac{1}{20}
Tehke korrutustehted murruga \frac{1\times 1}{5\times 4}.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}