Liigu edasi põhisisu juurde
Arvuta
Tick mark Image
Laienda
Tick mark Image
Graafik

Sarnased probleemid veebiotsingust

Jagama

\frac{\frac{\left(x-10\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)}+\frac{\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Avaldiste liitmiseks või lahutamiseks laiendage need, et neil oleksid ühised nimetajad. x+15 ja x-5 vähim ühiskordne on \left(x-5\right)\left(x+15\right). Korrutage omavahel \frac{x-10}{x+15} ja \frac{x-5}{x-5}. Korrutage omavahel \frac{x-10}{x-5} ja \frac{x+15}{x+15}.
\frac{\frac{\left(x-10\right)\left(x-5\right)+\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Kuna murdudel \frac{\left(x-10\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)} ja \frac{\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)} on sama nimetaja, liitke nende lugejad.
\frac{\frac{x^{2}-5x-10x+50+x^{2}+15x-10x-150}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Tehke korrutustehted võrrandis \left(x-10\right)\left(x-5\right)+\left(x-10\right)\left(x+15\right).
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Kombineerige sarnased liikmed avaldises x^{2}-5x-10x+50+x^{2}+15x-10x-150.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-5}{x-5}-\frac{5}{x-5}}
Avaldiste liitmiseks või lahutamiseks laiendage need, et neil oleksid ühised nimetajad. Korrutage omavahel 1 ja \frac{x-5}{x-5}.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-5-5}{x-5}}
Kuna murdudel \frac{x-5}{x-5} ja \frac{5}{x-5} on sama nimetaja, lahutage nende lugejad.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-10}{x-5}}
Kombineerige sarnased liikmed avaldises x-5-5.
\frac{\left(2x^{2}-10x-100\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)\left(x-10\right)}
Jagage \frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)} väärtusega \frac{x-10}{x-5}, korrutades \frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)} väärtuse \frac{x-10}{x-5} pöördväärtusega.
\frac{2x^{2}-10x-100}{\left(x-10\right)\left(x+15\right)}
Taandage x-5 nii lugejas kui ka nimetajas.
\frac{2\left(x-10\right)\left(x+5\right)}{\left(x-10\right)\left(x+15\right)}
Kui avaldised pole juba teguriteks lahutatud, tehke seda.
\frac{2\left(x+5\right)}{x+15}
Taandage x-10 nii lugejas kui ka nimetajas.
\frac{2x+10}{x+15}
Laiendage avaldist.
\frac{\frac{\left(x-10\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)}+\frac{\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Avaldiste liitmiseks või lahutamiseks laiendage need, et neil oleksid ühised nimetajad. x+15 ja x-5 vähim ühiskordne on \left(x-5\right)\left(x+15\right). Korrutage omavahel \frac{x-10}{x+15} ja \frac{x-5}{x-5}. Korrutage omavahel \frac{x-10}{x-5} ja \frac{x+15}{x+15}.
\frac{\frac{\left(x-10\right)\left(x-5\right)+\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Kuna murdudel \frac{\left(x-10\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)} ja \frac{\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)} on sama nimetaja, liitke nende lugejad.
\frac{\frac{x^{2}-5x-10x+50+x^{2}+15x-10x-150}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Tehke korrutustehted võrrandis \left(x-10\right)\left(x-5\right)+\left(x-10\right)\left(x+15\right).
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Kombineerige sarnased liikmed avaldises x^{2}-5x-10x+50+x^{2}+15x-10x-150.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-5}{x-5}-\frac{5}{x-5}}
Avaldiste liitmiseks või lahutamiseks laiendage need, et neil oleksid ühised nimetajad. Korrutage omavahel 1 ja \frac{x-5}{x-5}.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-5-5}{x-5}}
Kuna murdudel \frac{x-5}{x-5} ja \frac{5}{x-5} on sama nimetaja, lahutage nende lugejad.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-10}{x-5}}
Kombineerige sarnased liikmed avaldises x-5-5.
\frac{\left(2x^{2}-10x-100\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)\left(x-10\right)}
Jagage \frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)} väärtusega \frac{x-10}{x-5}, korrutades \frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)} väärtuse \frac{x-10}{x-5} pöördväärtusega.
\frac{2x^{2}-10x-100}{\left(x-10\right)\left(x+15\right)}
Taandage x-5 nii lugejas kui ka nimetajas.
\frac{2\left(x-10\right)\left(x+5\right)}{\left(x-10\right)\left(x+15\right)}
Kui avaldised pole juba teguriteks lahutatud, tehke seda.
\frac{2\left(x+5\right)}{x+15}
Taandage x-10 nii lugejas kui ka nimetajas.
\frac{2x+10}{x+15}
Laiendage avaldist.