Saltar al contenido principal
Factorizar
Tick mark Image
Calcular
Tick mark Image

Problemas similares de búsqueda web

Compartir

a+b=3 ab=1\left(-4\right)=-4
Factoriza la expresión agrupando. Primero, es necesario volver a escribir la expresión como z^{2}+az+bz-4. Para buscar a y b, configure un sistema que se va a resolver.
-1,4 -2,2
Dado que ab es negativo, a y b tienen los signos opuestos. Como a+b es positivo, el número positivo tiene un valor absoluto mayor que el negativo. Mostrar todos los pares de números enteros que den como producto -4.
-1+4=3 -2+2=0
Calcule la suma de cada par.
a=-1 b=4
La solución es el par que proporciona suma 3.
\left(z^{2}-z\right)+\left(4z-4\right)
Vuelva a escribir z^{2}+3z-4 como \left(z^{2}-z\right)+\left(4z-4\right).
z\left(z-1\right)+4\left(z-1\right)
Factoriza z en el primero y 4 en el segundo grupo.
\left(z-1\right)\left(z+4\right)
Simplifica el término común z-1 con la propiedad distributiva.
z^{2}+3z-4=0
Puede factorizar el polinomio cuadrático utilizando la transformación ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), donde x_{1} y x_{2} son las soluciones de la ecuación cuadrática ax^{2}+bx+c=0.
z=\frac{-3±\sqrt{3^{2}-4\left(-4\right)}}{2}
Todas las ecuaciones con la forma ax^{2}+bx+c=0 se pueden resolver con la fórmula cuadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula cuadrática proporciona dos soluciones, una cuando ± es una suma y otra cuando es una resta.
z=\frac{-3±\sqrt{9-4\left(-4\right)}}{2}
Obtiene el cuadrado de 3.
z=\frac{-3±\sqrt{9+16}}{2}
Multiplica -4 por -4.
z=\frac{-3±\sqrt{25}}{2}
Suma 9 y 16.
z=\frac{-3±5}{2}
Toma la raíz cuadrada de 25.
z=\frac{2}{2}
Ahora, resuelva la ecuación z=\frac{-3±5}{2} dónde ± es más. Suma -3 y 5.
z=1
Divide 2 por 2.
z=-\frac{8}{2}
Ahora, resuelva la ecuación z=\frac{-3±5}{2} dónde ± es menos. Resta 5 de -3.
z=-4
Divide -8 por 2.
z^{2}+3z-4=\left(z-1\right)\left(z-\left(-4\right)\right)
Factorice la expresión original con ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Sustituya 1 por x_{1} y -4 por x_{2}.
z^{2}+3z-4=\left(z-1\right)\left(z+4\right)
Simplifica todas las expresiones con la forma p-\left(-q\right) a p+q.