Saltar al contenido principal
Factorizar
Tick mark Image
Calcular
Tick mark Image
Gráfico

Problemas similares de búsqueda web

Compartir

a+b=-5 ab=1\times 6=6
Factoriza la expresión agrupando. Primero, es necesario volver a escribir la expresión como y^{2}+ay+by+6. Para buscar a y b, configure un sistema que se va a resolver.
-1,-6 -2,-3
Dado que ab es positivo, a y b tienen el mismo signo. Dado que a+b es negativo, a y b son negativos. Mostrar todos los pares de números enteros que den como producto 6.
-1-6=-7 -2-3=-5
Calcule la suma de cada par.
a=-3 b=-2
La solución es el par que proporciona suma -5.
\left(y^{2}-3y\right)+\left(-2y+6\right)
Vuelva a escribir y^{2}-5y+6 como \left(y^{2}-3y\right)+\left(-2y+6\right).
y\left(y-3\right)-2\left(y-3\right)
Factoriza y en el primero y -2 en el segundo grupo.
\left(y-3\right)\left(y-2\right)
Simplifica el término común y-3 con la propiedad distributiva.
y^{2}-5y+6=0
Puede factorizar el polinomio cuadrático utilizando la transformación ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), donde x_{1} y x_{2} son las soluciones de la ecuación cuadrática ax^{2}+bx+c=0.
y=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 6}}{2}
Todas las ecuaciones con la forma ax^{2}+bx+c=0 se pueden resolver con la fórmula cuadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula cuadrática proporciona dos soluciones, una cuando ± es una suma y otra cuando es una resta.
y=\frac{-\left(-5\right)±\sqrt{25-4\times 6}}{2}
Obtiene el cuadrado de -5.
y=\frac{-\left(-5\right)±\sqrt{25-24}}{2}
Multiplica -4 por 6.
y=\frac{-\left(-5\right)±\sqrt{1}}{2}
Suma 25 y -24.
y=\frac{-\left(-5\right)±1}{2}
Toma la raíz cuadrada de 1.
y=\frac{5±1}{2}
El opuesto de -5 es 5.
y=\frac{6}{2}
Ahora, resuelva la ecuación y=\frac{5±1}{2} dónde ± es más. Suma 5 y 1.
y=3
Divide 6 por 2.
y=\frac{4}{2}
Ahora, resuelva la ecuación y=\frac{5±1}{2} dónde ± es menos. Resta 1 de 5.
y=2
Divide 4 por 2.
y^{2}-5y+6=\left(y-3\right)\left(y-2\right)
Factorice la expresión original con ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Sustituya 3 por x_{1} y 2 por x_{2}.