Resolver para x
x=\frac{19x_{2}}{14}-\frac{x_{4}}{14}-\frac{2x_{3}}{7}
Resolver para x_2
x_{2}=\frac{14x+4x_{3}+x_{4}}{19}
Gráfico
Compartir
Copiado en el Portapapeles
4x_{3}-19x_{2}+14x=-x_{4}
Resta x_{4} en los dos lados. Cualquier valor restado de cero da como resultado su valor negativo.
-19x_{2}+14x=-x_{4}-4x_{3}
Resta 4x_{3} en los dos lados.
14x=-x_{4}-4x_{3}+19x_{2}
Agrega 19x_{2} a ambos lados.
14x=19x_{2}-4x_{3}-x_{4}
La ecuación está en formato estándar.
\frac{14x}{14}=\frac{19x_{2}-4x_{3}-x_{4}}{14}
Divide los dos lados por 14.
x=\frac{19x_{2}-4x_{3}-x_{4}}{14}
Al dividir por 14, se deshace la multiplicación por 14.
x=\frac{19x_{2}}{14}-\frac{x_{4}}{14}-\frac{2x_{3}}{7}
Divide -x_{4}-4x_{3}+19x_{2} por 14.
4x_{3}-19x_{2}+14x=-x_{4}
Resta x_{4} en los dos lados. Cualquier valor restado de cero da como resultado su valor negativo.
-19x_{2}+14x=-x_{4}-4x_{3}
Resta 4x_{3} en los dos lados.
-19x_{2}=-x_{4}-4x_{3}-14x
Resta 14x en los dos lados.
-19x_{2}=-14x-4x_{3}-x_{4}
La ecuación está en formato estándar.
\frac{-19x_{2}}{-19}=\frac{-14x-4x_{3}-x_{4}}{-19}
Divide los dos lados por -19.
x_{2}=\frac{-14x-4x_{3}-x_{4}}{-19}
Al dividir por -19, se deshace la multiplicación por -19.
x_{2}=\frac{14x+4x_{3}+x_{4}}{19}
Divide -x_{4}-4x_{3}-14x por -19.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}