Resolver para x
x=\frac{\sqrt{3409}}{14}+\frac{1}{2}\approx 4,670474451
x=-\frac{\sqrt{3409}}{14}+\frac{1}{2}\approx -3,670474451
Gráfico
Compartir
Copiado en el Portapapeles
x^{2}-x=\frac{120}{7}
Todas las ecuaciones con la forma ax^{2}+bx+c=0 se pueden resolver con la fórmula cuadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula cuadrática proporciona dos soluciones, una cuando ± es una suma y otra cuando es una resta.
x^{2}-x-\frac{120}{7}=\frac{120}{7}-\frac{120}{7}
Resta \frac{120}{7} en los dos lados de la ecuación.
x^{2}-x-\frac{120}{7}=0
Al restar \frac{120}{7} de su mismo valor, da como resultado 0.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-\frac{120}{7}\right)}}{2}
Esta ecuación tiene el formato estándar: ax^{2}+bx+c=0. Reemplace 1 por a, -1 por b y -\frac{120}{7} por c en la fórmula cuadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+\frac{480}{7}}}{2}
Multiplica -4 por -\frac{120}{7}.
x=\frac{-\left(-1\right)±\sqrt{\frac{487}{7}}}{2}
Suma 1 y \frac{480}{7}.
x=\frac{-\left(-1\right)±\frac{\sqrt{3409}}{7}}{2}
Toma la raíz cuadrada de \frac{487}{7}.
x=\frac{1±\frac{\sqrt{3409}}{7}}{2}
El opuesto de -1 es 1.
x=\frac{\frac{\sqrt{3409}}{7}+1}{2}
Ahora, resuelva la ecuación x=\frac{1±\frac{\sqrt{3409}}{7}}{2} dónde ± es más. Suma 1 y \frac{\sqrt{3409}}{7}.
x=\frac{\sqrt{3409}}{14}+\frac{1}{2}
Divide 1+\frac{\sqrt{3409}}{7} por 2.
x=\frac{-\frac{\sqrt{3409}}{7}+1}{2}
Ahora, resuelva la ecuación x=\frac{1±\frac{\sqrt{3409}}{7}}{2} dónde ± es menos. Resta \frac{\sqrt{3409}}{7} de 1.
x=-\frac{\sqrt{3409}}{14}+\frac{1}{2}
Divide 1-\frac{\sqrt{3409}}{7} por 2.
x=\frac{\sqrt{3409}}{14}+\frac{1}{2} x=-\frac{\sqrt{3409}}{14}+\frac{1}{2}
La ecuación ahora está resuelta.
x^{2}-x=\frac{120}{7}
Las ecuaciones cuadráticas como esta se pueden resolver si se completa el cuadrado. Para completar el cuadrado, la ecuación tiene que estar primero en la forma x^{2}+bx=c.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{120}{7}+\left(-\frac{1}{2}\right)^{2}
Divida -1, el coeficiente del término x, mediante la 2 de obtener -\frac{1}{2}. A continuación, agregue el cuadrado de -\frac{1}{2} a los dos lados de la ecuación. Este paso hace que el lado izquierdo de la ecuación sea un cuadrado perfecto.
x^{2}-x+\frac{1}{4}=\frac{120}{7}+\frac{1}{4}
Obtiene el cuadrado de -\frac{1}{2}. Para hacerlo, calcula el cuadrado del numerador y el denominador de la fracción.
x^{2}-x+\frac{1}{4}=\frac{487}{28}
Suma \frac{120}{7} y \frac{1}{4}. Para hacerlo, obtiene un denominador común y suma los numeradores y, después, reduce la fracción a los términos mínimos (si es posible).
\left(x-\frac{1}{2}\right)^{2}=\frac{487}{28}
Factor x^{2}-x+\frac{1}{4}. En general, cuando x^{2}+bx+c es un cuadrado perfecto, siempre se puede factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{487}{28}}
Toma la raíz cuadrada de los dos lados de la ecuación.
x-\frac{1}{2}=\frac{\sqrt{3409}}{14} x-\frac{1}{2}=-\frac{\sqrt{3409}}{14}
Simplifica.
x=\frac{\sqrt{3409}}{14}+\frac{1}{2} x=-\frac{\sqrt{3409}}{14}+\frac{1}{2}
Suma \frac{1}{2} a los dos lados de la ecuación.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}