Saltar al contenido principal
Factorizar
Tick mark Image
Calcular
Tick mark Image
Gráfico

Problemas similares de búsqueda web

Compartir

a+b=-6 ab=1\times 8=8
Factoriza la expresión agrupando. Primero, es necesario volver a escribir la expresión como x^{2}+ax+bx+8. Para buscar a y b, configure un sistema que se va a resolver.
-1,-8 -2,-4
Dado que ab es positivo, a y b tienen el mismo signo. Dado que a+b es negativo, a y b son negativos. Mostrar todos los pares de números enteros que den como producto 8.
-1-8=-9 -2-4=-6
Calcule la suma de cada par.
a=-4 b=-2
La solución es el par que proporciona suma -6.
\left(x^{2}-4x\right)+\left(-2x+8\right)
Vuelva a escribir x^{2}-6x+8 como \left(x^{2}-4x\right)+\left(-2x+8\right).
x\left(x-4\right)-2\left(x-4\right)
Factoriza x en el primero y -2 en el segundo grupo.
\left(x-4\right)\left(x-2\right)
Simplifica el término común x-4 con la propiedad distributiva.
x^{2}-6x+8=0
Puede factorizar el polinomio cuadrático utilizando la transformación ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), donde x_{1} y x_{2} son las soluciones de la ecuación cuadrática ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 8}}{2}
Todas las ecuaciones con la forma ax^{2}+bx+c=0 se pueden resolver con la fórmula cuadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula cuadrática proporciona dos soluciones, una cuando ± es una suma y otra cuando es una resta.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 8}}{2}
Obtiene el cuadrado de -6.
x=\frac{-\left(-6\right)±\sqrt{36-32}}{2}
Multiplica -4 por 8.
x=\frac{-\left(-6\right)±\sqrt{4}}{2}
Suma 36 y -32.
x=\frac{-\left(-6\right)±2}{2}
Toma la raíz cuadrada de 4.
x=\frac{6±2}{2}
El opuesto de -6 es 6.
x=\frac{8}{2}
Ahora, resuelva la ecuación x=\frac{6±2}{2} dónde ± es más. Suma 6 y 2.
x=4
Divide 8 por 2.
x=\frac{4}{2}
Ahora, resuelva la ecuación x=\frac{6±2}{2} dónde ± es menos. Resta 2 de 6.
x=2
Divide 4 por 2.
x^{2}-6x+8=\left(x-4\right)\left(x-2\right)
Factorice la expresión original con ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Sustituya 4 por x_{1} y 2 por x_{2}.