Saltar al contenido principal
Factorizar
Tick mark Image
Calcular
Tick mark Image
Gráfico

Problemas similares de búsqueda web

Compartir

a+b=-5 ab=1\times 4=4
Factoriza la expresión agrupando. Primero, es necesario volver a escribir la expresión como x^{2}+ax+bx+4. Para buscar a y b, configure un sistema que se va a resolver.
-1,-4 -2,-2
Dado que ab es positivo, a y b tienen el mismo signo. Dado que a+b es negativo, a y b son negativos. Mostrar todos los pares de números enteros que den como producto 4.
-1-4=-5 -2-2=-4
Calcule la suma de cada par.
a=-4 b=-1
La solución es el par que proporciona suma -5.
\left(x^{2}-4x\right)+\left(-x+4\right)
Vuelva a escribir x^{2}-5x+4 como \left(x^{2}-4x\right)+\left(-x+4\right).
x\left(x-4\right)-\left(x-4\right)
Factoriza x en el primero y -1 en el segundo grupo.
\left(x-4\right)\left(x-1\right)
Simplifica el término común x-4 con la propiedad distributiva.
x^{2}-5x+4=0
Puede factorizar el polinomio cuadrático utilizando la transformación ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), donde x_{1} y x_{2} son las soluciones de la ecuación cuadrática ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4}}{2}
Todas las ecuaciones con la forma ax^{2}+bx+c=0 se pueden resolver con la fórmula cuadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula cuadrática proporciona dos soluciones, una cuando ± es una suma y otra cuando es una resta.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 4}}{2}
Obtiene el cuadrado de -5.
x=\frac{-\left(-5\right)±\sqrt{25-16}}{2}
Multiplica -4 por 4.
x=\frac{-\left(-5\right)±\sqrt{9}}{2}
Suma 25 y -16.
x=\frac{-\left(-5\right)±3}{2}
Toma la raíz cuadrada de 9.
x=\frac{5±3}{2}
El opuesto de -5 es 5.
x=\frac{8}{2}
Ahora, resuelva la ecuación x=\frac{5±3}{2} dónde ± es más. Suma 5 y 3.
x=4
Divide 8 por 2.
x=\frac{2}{2}
Ahora, resuelva la ecuación x=\frac{5±3}{2} dónde ± es menos. Resta 3 de 5.
x=1
Divide 2 por 2.
x^{2}-5x+4=\left(x-4\right)\left(x-1\right)
Factorice la expresión original con ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Sustituya 4 por x_{1} y 1 por x_{2}.