Saltar al contenido principal
Resolver para x
Tick mark Image
Gráfico

Problemas similares de búsqueda web

Compartir

x^{2}-3x+53-3x=44
Resta 3x en los dos lados.
x^{2}-6x+53=44
Combina -3x y -3x para obtener -6x.
x^{2}-6x+53-44=0
Resta 44 en los dos lados.
x^{2}-6x+9=0
Resta 44 de 53 para obtener 9.
a+b=-6 ab=9
Para resolver la ecuación, factor x^{2}-6x+9 utilizar la fórmula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Para buscar a y b, configure un sistema que se va a resolver.
-1,-9 -3,-3
Dado que ab es positivo, a y b tienen el mismo signo. Dado que a+b es negativo, a y b son negativos. Mostrar todos los pares de números enteros que den como producto 9.
-1-9=-10 -3-3=-6
Calcule la suma de cada par.
a=-3 b=-3
La solución es el par que proporciona suma -6.
\left(x-3\right)\left(x-3\right)
Vuelve a escribir la expresión factorizada \left(x+a\right)\left(x+b\right) con los valores obtenidos.
\left(x-3\right)^{2}
Reescribe como el cuadrado de un binomio.
x=3
Para buscar soluciones de ecuaciones, resuelva x-3=0.
x^{2}-3x+53-3x=44
Resta 3x en los dos lados.
x^{2}-6x+53=44
Combina -3x y -3x para obtener -6x.
x^{2}-6x+53-44=0
Resta 44 en los dos lados.
x^{2}-6x+9=0
Resta 44 de 53 para obtener 9.
a+b=-6 ab=1\times 9=9
Para resolver la ecuación, desborde la mano izquierda agrupando. En primer lugar, la izquierda debe reescribirse como x^{2}+ax+bx+9. Para buscar a y b, configure un sistema que se va a resolver.
-1,-9 -3,-3
Dado que ab es positivo, a y b tienen el mismo signo. Dado que a+b es negativo, a y b son negativos. Mostrar todos los pares de números enteros que den como producto 9.
-1-9=-10 -3-3=-6
Calcule la suma de cada par.
a=-3 b=-3
La solución es el par que proporciona suma -6.
\left(x^{2}-3x\right)+\left(-3x+9\right)
Vuelva a escribir x^{2}-6x+9 como \left(x^{2}-3x\right)+\left(-3x+9\right).
x\left(x-3\right)-3\left(x-3\right)
Factoriza x en el primero y -3 en el segundo grupo.
\left(x-3\right)\left(x-3\right)
Simplifica el término común x-3 con la propiedad distributiva.
\left(x-3\right)^{2}
Reescribe como el cuadrado de un binomio.
x=3
Para buscar soluciones de ecuaciones, resuelva x-3=0.
x^{2}-3x+53-3x=44
Resta 3x en los dos lados.
x^{2}-6x+53=44
Combina -3x y -3x para obtener -6x.
x^{2}-6x+53-44=0
Resta 44 en los dos lados.
x^{2}-6x+9=0
Resta 44 de 53 para obtener 9.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9}}{2}
Esta ecuación tiene el formato estándar: ax^{2}+bx+c=0. Reemplace 1 por a, -6 por b y 9 por c en la fórmula cuadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 9}}{2}
Obtiene el cuadrado de -6.
x=\frac{-\left(-6\right)±\sqrt{36-36}}{2}
Multiplica -4 por 9.
x=\frac{-\left(-6\right)±\sqrt{0}}{2}
Suma 36 y -36.
x=-\frac{-6}{2}
Toma la raíz cuadrada de 0.
x=\frac{6}{2}
El opuesto de -6 es 6.
x=3
Divide 6 por 2.
x^{2}-3x+53-3x=44
Resta 3x en los dos lados.
x^{2}-6x+53=44
Combina -3x y -3x para obtener -6x.
x^{2}-6x=44-53
Resta 53 en los dos lados.
x^{2}-6x=-9
Resta 53 de 44 para obtener -9.
x^{2}-6x+\left(-3\right)^{2}=-9+\left(-3\right)^{2}
Divida -6, el coeficiente del término x, mediante la 2 de obtener -3. A continuación, agregue el cuadrado de -3 a los dos lados de la ecuación. Este paso hace que el lado izquierdo de la ecuación sea un cuadrado perfecto.
x^{2}-6x+9=-9+9
Obtiene el cuadrado de -3.
x^{2}-6x+9=0
Suma -9 y 9.
\left(x-3\right)^{2}=0
Factor x^{2}-6x+9. En general, cuando x^{2}+bx+c es un cuadrado perfecto, siempre se puede factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{0}
Toma la raíz cuadrada de los dos lados de la ecuación.
x-3=0 x-3=0
Simplifica.
x=3 x=3
Suma 3 a los dos lados de la ecuación.
x=3
La ecuación ahora está resuelta. Las soluciones son las mismas.