Saltar al contenido principal
Factorizar
Tick mark Image
Calcular
Tick mark Image
Gráfico

Problemas similares de búsqueda web

Compartir

a+b=4 ab=1\left(-45\right)=-45
Factoriza la expresión agrupando. Primero, es necesario volver a escribir la expresión como x^{2}+ax+bx-45. Para buscar a y b, configure un sistema que se va a resolver.
-1,45 -3,15 -5,9
Dado que ab es negativo, a y b tienen los signos opuestos. Como a+b es positivo, el número positivo tiene un valor absoluto mayor que el negativo. Mostrar todos los pares de números enteros que den como producto -45.
-1+45=44 -3+15=12 -5+9=4
Calcule la suma de cada par.
a=-5 b=9
La solución es el par que proporciona suma 4.
\left(x^{2}-5x\right)+\left(9x-45\right)
Vuelva a escribir x^{2}+4x-45 como \left(x^{2}-5x\right)+\left(9x-45\right).
x\left(x-5\right)+9\left(x-5\right)
Factoriza x en el primero y 9 en el segundo grupo.
\left(x-5\right)\left(x+9\right)
Simplifica el término común x-5 con la propiedad distributiva.
x^{2}+4x-45=0
Puede factorizar el polinomio cuadrático utilizando la transformación ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), donde x_{1} y x_{2} son las soluciones de la ecuación cuadrática ax^{2}+bx+c=0.
x=\frac{-4±\sqrt{4^{2}-4\left(-45\right)}}{2}
Todas las ecuaciones con la forma ax^{2}+bx+c=0 se pueden resolver con la fórmula cuadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula cuadrática proporciona dos soluciones, una cuando ± es una suma y otra cuando es una resta.
x=\frac{-4±\sqrt{16-4\left(-45\right)}}{2}
Obtiene el cuadrado de 4.
x=\frac{-4±\sqrt{16+180}}{2}
Multiplica -4 por -45.
x=\frac{-4±\sqrt{196}}{2}
Suma 16 y 180.
x=\frac{-4±14}{2}
Toma la raíz cuadrada de 196.
x=\frac{10}{2}
Ahora, resuelva la ecuación x=\frac{-4±14}{2} dónde ± es más. Suma -4 y 14.
x=5
Divide 10 por 2.
x=-\frac{18}{2}
Ahora, resuelva la ecuación x=\frac{-4±14}{2} dónde ± es menos. Resta 14 de -4.
x=-9
Divide -18 por 2.
x^{2}+4x-45=\left(x-5\right)\left(x-\left(-9\right)\right)
Factorice la expresión original con ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Sustituya 5 por x_{1} y -9 por x_{2}.
x^{2}+4x-45=\left(x-5\right)\left(x+9\right)
Simplifica todas las expresiones con la forma p-\left(-q\right) a p+q.