Resolver para x
x=-13
x=1
Gráfico
Compartir
Copiado en el Portapapeles
x^{2}+12x-13=0
Resta 13 en los dos lados.
a+b=12 ab=-13
Para resolver la ecuación, factor x^{2}+12x-13 utilizar la fórmula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Para buscar a y b, configure un sistema que se va a resolver.
a=-1 b=13
Dado que ab es negativo, a y b tienen los signos opuestos. Como a+b es positivo, el número positivo tiene un valor absoluto mayor que el negativo. El único par como este es la solución de sistema.
\left(x-1\right)\left(x+13\right)
Vuelve a escribir la expresión factorizada \left(x+a\right)\left(x+b\right) con los valores obtenidos.
x=1 x=-13
Para buscar soluciones de ecuaciones, resuelva x-1=0 y x+13=0.
x^{2}+12x-13=0
Resta 13 en los dos lados.
a+b=12 ab=1\left(-13\right)=-13
Para resolver la ecuación, desborde la mano izquierda agrupando. En primer lugar, la izquierda debe reescribirse como x^{2}+ax+bx-13. Para buscar a y b, configure un sistema que se va a resolver.
a=-1 b=13
Dado que ab es negativo, a y b tienen los signos opuestos. Como a+b es positivo, el número positivo tiene un valor absoluto mayor que el negativo. El único par como este es la solución de sistema.
\left(x^{2}-x\right)+\left(13x-13\right)
Vuelva a escribir x^{2}+12x-13 como \left(x^{2}-x\right)+\left(13x-13\right).
x\left(x-1\right)+13\left(x-1\right)
Factoriza x en el primero y 13 en el segundo grupo.
\left(x-1\right)\left(x+13\right)
Simplifica el término común x-1 con la propiedad distributiva.
x=1 x=-13
Para buscar soluciones de ecuaciones, resuelva x-1=0 y x+13=0.
x^{2}+12x=13
Todas las ecuaciones con la forma ax^{2}+bx+c=0 se pueden resolver con la fórmula cuadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula cuadrática proporciona dos soluciones, una cuando ± es una suma y otra cuando es una resta.
x^{2}+12x-13=13-13
Resta 13 en los dos lados de la ecuación.
x^{2}+12x-13=0
Al restar 13 de su mismo valor, da como resultado 0.
x=\frac{-12±\sqrt{12^{2}-4\left(-13\right)}}{2}
Esta ecuación tiene el formato estándar: ax^{2}+bx+c=0. Reemplace 1 por a, 12 por b y -13 por c en la fórmula cuadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-13\right)}}{2}
Obtiene el cuadrado de 12.
x=\frac{-12±\sqrt{144+52}}{2}
Multiplica -4 por -13.
x=\frac{-12±\sqrt{196}}{2}
Suma 144 y 52.
x=\frac{-12±14}{2}
Toma la raíz cuadrada de 196.
x=\frac{2}{2}
Ahora, resuelva la ecuación x=\frac{-12±14}{2} dónde ± es más. Suma -12 y 14.
x=1
Divide 2 por 2.
x=-\frac{26}{2}
Ahora, resuelva la ecuación x=\frac{-12±14}{2} dónde ± es menos. Resta 14 de -12.
x=-13
Divide -26 por 2.
x=1 x=-13
La ecuación ahora está resuelta.
x^{2}+12x=13
Las ecuaciones cuadráticas como esta se pueden resolver si se completa el cuadrado. Para completar el cuadrado, la ecuación tiene que estar primero en la forma x^{2}+bx=c.
x^{2}+12x+6^{2}=13+6^{2}
Divida 12, el coeficiente del término x, mediante la 2 de obtener 6. A continuación, agregue el cuadrado de 6 a los dos lados de la ecuación. Este paso hace que el lado izquierdo de la ecuación sea un cuadrado perfecto.
x^{2}+12x+36=13+36
Obtiene el cuadrado de 6.
x^{2}+12x+36=49
Suma 13 y 36.
\left(x+6\right)^{2}=49
Factor x^{2}+12x+36. En general, cuando x^{2}+bx+c es un cuadrado perfecto, siempre se puede factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{49}
Toma la raíz cuadrada de los dos lados de la ecuación.
x+6=7 x+6=-7
Simplifica.
x=1 x=-13
Resta 6 en los dos lados de la ecuación.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}