Resolver para t
t=-\frac{\sqrt{15}}{5}\approx -0,774596669
Asignar t
t≔-\frac{\sqrt{15}}{5}
Compartir
Copiado en el Portapapeles
t=\frac{-10}{\frac{50}{\sqrt{15}}}
Resta 300 de 290 para obtener -10.
t=\frac{-10}{\frac{50\sqrt{15}}{\left(\sqrt{15}\right)^{2}}}
Racionaliza el denominador de \frac{50}{\sqrt{15}} multiplicando el numerador y el denominador \sqrt{15}.
t=\frac{-10}{\frac{50\sqrt{15}}{15}}
El cuadrado de \sqrt{15} es 15.
t=\frac{-10}{\frac{10}{3}\sqrt{15}}
Divide 50\sqrt{15} entre 15 para obtener \frac{10}{3}\sqrt{15}.
t=\frac{-10\sqrt{15}}{\frac{10}{3}\left(\sqrt{15}\right)^{2}}
Racionaliza el denominador de \frac{-10}{\frac{10}{3}\sqrt{15}} multiplicando el numerador y el denominador \sqrt{15}.
t=\frac{-10\sqrt{15}}{\frac{10}{3}\times 15}
El cuadrado de \sqrt{15} es 15.
t=\frac{-2\sqrt{15}}{3\times \frac{10}{3}}
Anula 5 tanto en el numerador como en el denominador.
t=\frac{-2\sqrt{15}}{10}
Anula 3 y 3.
t=-\frac{1}{5}\sqrt{15}
Divide -2\sqrt{15} entre 10 para obtener -\frac{1}{5}\sqrt{15}.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}