Resolver para n
n = \frac{\sqrt{3697} - 41}{2} \approx 9,901480227
n=\frac{-\sqrt{3697}-41}{2}\approx -50,901480227
Compartir
Copiado en el Portapapeles
n^{2}+41n-504=0
Todas las ecuaciones con la forma ax^{2}+bx+c=0 se pueden resolver con la fórmula cuadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula cuadrática proporciona dos soluciones, una cuando ± es una suma y otra cuando es una resta.
n=\frac{-41±\sqrt{41^{2}-4\left(-504\right)}}{2}
Esta ecuación tiene el formato estándar: ax^{2}+bx+c=0. Reemplace 1 por a, 41 por b y -504 por c en la fórmula cuadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-41±\sqrt{1681-4\left(-504\right)}}{2}
Obtiene el cuadrado de 41.
n=\frac{-41±\sqrt{1681+2016}}{2}
Multiplica -4 por -504.
n=\frac{-41±\sqrt{3697}}{2}
Suma 1681 y 2016.
n=\frac{\sqrt{3697}-41}{2}
Ahora, resuelva la ecuación n=\frac{-41±\sqrt{3697}}{2} dónde ± es más. Suma -41 y \sqrt{3697}.
n=\frac{-\sqrt{3697}-41}{2}
Ahora, resuelva la ecuación n=\frac{-41±\sqrt{3697}}{2} dónde ± es menos. Resta \sqrt{3697} de -41.
n=\frac{\sqrt{3697}-41}{2} n=\frac{-\sqrt{3697}-41}{2}
La ecuación ahora está resuelta.
n^{2}+41n-504=0
Las ecuaciones cuadráticas como esta se pueden resolver si se completa el cuadrado. Para completar el cuadrado, la ecuación tiene que estar primero en la forma x^{2}+bx=c.
n^{2}+41n-504-\left(-504\right)=-\left(-504\right)
Suma 504 a los dos lados de la ecuación.
n^{2}+41n=-\left(-504\right)
Al restar -504 de su mismo valor, da como resultado 0.
n^{2}+41n=504
Resta -504 de 0.
n^{2}+41n+\left(\frac{41}{2}\right)^{2}=504+\left(\frac{41}{2}\right)^{2}
Divida 41, el coeficiente del término x, mediante la 2 de obtener \frac{41}{2}. A continuación, agregue el cuadrado de \frac{41}{2} a los dos lados de la ecuación. Este paso hace que el lado izquierdo de la ecuación sea un cuadrado perfecto.
n^{2}+41n+\frac{1681}{4}=504+\frac{1681}{4}
Obtiene el cuadrado de \frac{41}{2}. Para hacerlo, calcula el cuadrado del numerador y el denominador de la fracción.
n^{2}+41n+\frac{1681}{4}=\frac{3697}{4}
Suma 504 y \frac{1681}{4}.
\left(n+\frac{41}{2}\right)^{2}=\frac{3697}{4}
Factor n^{2}+41n+\frac{1681}{4}. En general, cuando x^{2}+bx+c es un cuadrado perfecto, siempre se puede factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{41}{2}\right)^{2}}=\sqrt{\frac{3697}{4}}
Toma la raíz cuadrada de los dos lados de la ecuación.
n+\frac{41}{2}=\frac{\sqrt{3697}}{2} n+\frac{41}{2}=-\frac{\sqrt{3697}}{2}
Simplifica.
n=\frac{\sqrt{3697}-41}{2} n=\frac{-\sqrt{3697}-41}{2}
Resta \frac{41}{2} en los dos lados de la ecuación.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}