Saltar al contenido principal
Factorizar
Tick mark Image
Calcular
Tick mark Image
Gráfico

Problemas similares de búsqueda web

Compartir

2\left(x^{2}-4x-21\right)
Simplifica 2.
a+b=-4 ab=1\left(-21\right)=-21
Piense en x^{2}-4x-21. Factoriza la expresión agrupando. Primero, es necesario volver a escribir la expresión como x^{2}+ax+bx-21. Para buscar a y b, configure un sistema que se va a resolver.
1,-21 3,-7
Dado que ab es negativo, a y b tienen los signos opuestos. Dado que a+b es negativa, el número negativo tiene un valor absoluto mayor que el positivo. Mostrar todos los pares de números enteros que den como producto -21.
1-21=-20 3-7=-4
Calcule la suma de cada par.
a=-7 b=3
La solución es el par que proporciona suma -4.
\left(x^{2}-7x\right)+\left(3x-21\right)
Vuelva a escribir x^{2}-4x-21 como \left(x^{2}-7x\right)+\left(3x-21\right).
x\left(x-7\right)+3\left(x-7\right)
Factoriza x en el primero y 3 en el segundo grupo.
\left(x-7\right)\left(x+3\right)
Simplifica el término común x-7 con la propiedad distributiva.
2\left(x-7\right)\left(x+3\right)
Vuelva a escribir la expresión factorizada completa.
2x^{2}-8x-42=0
Puede factorizar el polinomio cuadrático utilizando la transformación ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), donde x_{1} y x_{2} son las soluciones de la ecuación cuadrática ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\left(-42\right)}}{2\times 2}
Todas las ecuaciones con la forma ax^{2}+bx+c=0 se pueden resolver con la fórmula cuadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula cuadrática proporciona dos soluciones, una cuando ± es una suma y otra cuando es una resta.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\left(-42\right)}}{2\times 2}
Obtiene el cuadrado de -8.
x=\frac{-\left(-8\right)±\sqrt{64-8\left(-42\right)}}{2\times 2}
Multiplica -4 por 2.
x=\frac{-\left(-8\right)±\sqrt{64+336}}{2\times 2}
Multiplica -8 por -42.
x=\frac{-\left(-8\right)±\sqrt{400}}{2\times 2}
Suma 64 y 336.
x=\frac{-\left(-8\right)±20}{2\times 2}
Toma la raíz cuadrada de 400.
x=\frac{8±20}{2\times 2}
El opuesto de -8 es 8.
x=\frac{8±20}{4}
Multiplica 2 por 2.
x=\frac{28}{4}
Ahora, resuelva la ecuación x=\frac{8±20}{4} dónde ± es más. Suma 8 y 20.
x=7
Divide 28 por 4.
x=-\frac{12}{4}
Ahora, resuelva la ecuación x=\frac{8±20}{4} dónde ± es menos. Resta 20 de 8.
x=-3
Divide -12 por 4.
2x^{2}-8x-42=2\left(x-7\right)\left(x-\left(-3\right)\right)
Factorice la expresión original con ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Sustituya 7 por x_{1} y -3 por x_{2}.
2x^{2}-8x-42=2\left(x-7\right)\left(x+3\right)
Simplifica todas las expresiones con la forma p-\left(-q\right) a p+q.