b + 3 a - 6 = ( a b - 2 b ) + ( 3 a - 6
Resolver para a
\left\{\begin{matrix}\\a=3\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&b=0\end{matrix}\right,
Resolver para b
\left\{\begin{matrix}\\b=0\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&a=3\end{matrix}\right,
Compartir
Copiado en el Portapapeles
b+3a-6-ab=-2b+3a-6
Resta ab en los dos lados.
b+3a-6-ab-3a=-2b-6
Resta 3a en los dos lados.
b-6-ab=-2b-6
Combina 3a y -3a para obtener 0.
-6-ab=-2b-6-b
Resta b en los dos lados.
-6-ab=-3b-6
Combina -2b y -b para obtener -3b.
-ab=-3b-6+6
Agrega 6 a ambos lados.
-ab=-3b
Suma -6 y 6 para obtener 0.
\left(-b\right)a=-3b
La ecuación está en formato estándar.
\frac{\left(-b\right)a}{-b}=-\frac{3b}{-b}
Divide los dos lados por -b.
a=-\frac{3b}{-b}
Al dividir por -b, se deshace la multiplicación por -b.
a=3
Divide -3b por -b.
b+3a-6-ab=-2b+3a-6
Resta ab en los dos lados.
b+3a-6-ab+2b=3a-6
Agrega 2b a ambos lados.
3b+3a-6-ab=3a-6
Combina b y 2b para obtener 3b.
3b-6-ab=3a-6-3a
Resta 3a en los dos lados.
3b-6-ab=-6
Combina 3a y -3a para obtener 0.
3b-ab=-6+6
Agrega 6 a ambos lados.
3b-ab=0
Suma -6 y 6 para obtener 0.
\left(3-a\right)b=0
Combina todos los términos que contienen b.
b=0
Divide 0 por 3-a.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}