Factorizar
a\left(x-2\right)\left(x+6\right)
Calcular
a\left(x-2\right)\left(x+6\right)
Gráfico
Compartir
Copiado en el Portapapeles
a\left(x^{2}+4x-12\right)
Simplifica a.
p+q=4 pq=1\left(-12\right)=-12
Piense en x^{2}+4x-12. Factoriza la expresión agrupando. Primero, es necesario volver a escribir la expresión como x^{2}+px+qx-12. Para buscar p y q, configure un sistema que se va a resolver.
-1,12 -2,6 -3,4
Dado que pq es negativo, p y q tienen los signos opuestos. Como p+q es positivo, el número positivo tiene un valor absoluto mayor que el negativo. Mostrar todos los pares de números enteros que den como producto -12.
-1+12=11 -2+6=4 -3+4=1
Calcule la suma de cada par.
p=-2 q=6
La solución es el par que proporciona suma 4.
\left(x^{2}-2x\right)+\left(6x-12\right)
Vuelva a escribir x^{2}+4x-12 como \left(x^{2}-2x\right)+\left(6x-12\right).
x\left(x-2\right)+6\left(x-2\right)
Factoriza x en el primero y 6 en el segundo grupo.
\left(x-2\right)\left(x+6\right)
Simplifica el término común x-2 con la propiedad distributiva.
a\left(x-2\right)\left(x+6\right)
Vuelva a escribir la expresión factorizada completa.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}