Resolver para a
a=-\frac{4b-105}{b+4}
b\neq -4
Resolver para b
b=-\frac{4a-105}{a+4}
a\neq -4
Compartir
Copiado en el Portapapeles
ab+4a-9=96-4b
Resta 4b en los dos lados.
ab+4a=96-4b+9
Agrega 9 a ambos lados.
ab+4a=105-4b
Suma 96 y 9 para obtener 105.
\left(b+4\right)a=105-4b
Combina todos los términos que contienen a.
\frac{\left(b+4\right)a}{b+4}=\frac{105-4b}{b+4}
Divide los dos lados por b+4.
a=\frac{105-4b}{b+4}
Al dividir por b+4, se deshace la multiplicación por b+4.
ab+4b-9=96-4a
Resta 4a en los dos lados.
ab+4b=96-4a+9
Agrega 9 a ambos lados.
ab+4b=105-4a
Suma 96 y 9 para obtener 105.
\left(a+4\right)b=105-4a
Combina todos los términos que contienen b.
\frac{\left(a+4\right)b}{a+4}=\frac{105-4a}{a+4}
Divide los dos lados por a+4.
b=\frac{105-4a}{a+4}
Al dividir por a+4, se deshace la multiplicación por a+4.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}