Saltar al contenido principal
Factorizar
Tick mark Image
Calcular
Tick mark Image
Gráfico

Problemas similares de búsqueda web

Compartir

a+b=-5 ab=2\left(-3\right)=-6
Factoriza la expresión agrupando. Primero, es necesario volver a escribir la expresión como 2x^{2}+ax+bx-3. Para buscar a y b, configure un sistema que se va a resolver.
1,-6 2,-3
Dado que ab es negativo, a y b tienen los signos opuestos. Dado que a+b es negativa, el número negativo tiene un valor absoluto mayor que el positivo. Mostrar todos los pares de números enteros que den como producto -6.
1-6=-5 2-3=-1
Calcule la suma de cada par.
a=-6 b=1
La solución es el par que proporciona suma -5.
\left(2x^{2}-6x\right)+\left(x-3\right)
Vuelva a escribir 2x^{2}-5x-3 como \left(2x^{2}-6x\right)+\left(x-3\right).
2x\left(x-3\right)+x-3
Simplifica 2x en 2x^{2}-6x.
\left(x-3\right)\left(2x+1\right)
Simplifica el término común x-3 con la propiedad distributiva.
2x^{2}-5x-3=0
Puede factorizar el polinomio cuadrático utilizando la transformación ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), donde x_{1} y x_{2} son las soluciones de la ecuación cuadrática ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-3\right)}}{2\times 2}
Todas las ecuaciones con la forma ax^{2}+bx+c=0 se pueden resolver con la fórmula cuadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula cuadrática proporciona dos soluciones, una cuando ± es una suma y otra cuando es una resta.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-3\right)}}{2\times 2}
Obtiene el cuadrado de -5.
x=\frac{-\left(-5\right)±\sqrt{25-8\left(-3\right)}}{2\times 2}
Multiplica -4 por 2.
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2\times 2}
Multiplica -8 por -3.
x=\frac{-\left(-5\right)±\sqrt{49}}{2\times 2}
Suma 25 y 24.
x=\frac{-\left(-5\right)±7}{2\times 2}
Toma la raíz cuadrada de 49.
x=\frac{5±7}{2\times 2}
El opuesto de -5 es 5.
x=\frac{5±7}{4}
Multiplica 2 por 2.
x=\frac{12}{4}
Ahora, resuelva la ecuación x=\frac{5±7}{4} dónde ± es más. Suma 5 y 7.
x=3
Divide 12 por 4.
x=-\frac{2}{4}
Ahora, resuelva la ecuación x=\frac{5±7}{4} dónde ± es menos. Resta 7 de 5.
x=-\frac{1}{2}
Reduzca la fracción \frac{-2}{4} a su mínima expresión extrayendo y anulando 2.
2x^{2}-5x-3=2\left(x-3\right)\left(x-\left(-\frac{1}{2}\right)\right)
Factorice la expresión original con ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Sustituya 3 por x_{1} y -\frac{1}{2} por x_{2}.
2x^{2}-5x-3=2\left(x-3\right)\left(x+\frac{1}{2}\right)
Simplifica todas las expresiones con la forma p-\left(-q\right) a p+q.
2x^{2}-5x-3=2\left(x-3\right)\times \frac{2x+1}{2}
Suma \frac{1}{2} y x. Para hacerlo, obtiene un denominador común y suma los numeradores y, después, reduce la fracción a los términos mínimos (si es posible).
2x^{2}-5x-3=\left(x-3\right)\left(2x+1\right)
Cancela el máximo común divisor 2 en 2 y 2.