Saltar al contenido principal
Resolver para x (solución compleja)
Tick mark Image
Resolver para x
Tick mark Image
Gráfico

Problemas similares de búsqueda web

Compartir

±\frac{729}{64},±\frac{729}{32},±\frac{729}{16},±\frac{729}{8},±\frac{729}{4},±\frac{729}{2},±729,±\frac{243}{64},±\frac{243}{32},±\frac{243}{16},±\frac{243}{8},±\frac{243}{4},±\frac{243}{2},±243,±\frac{81}{64},±\frac{81}{32},±\frac{81}{16},±\frac{81}{8},±\frac{81}{4},±\frac{81}{2},±81,±\frac{27}{64},±\frac{27}{32},±\frac{27}{16},±\frac{27}{8},±\frac{27}{4},±\frac{27}{2},±27,±\frac{9}{64},±\frac{9}{32},±\frac{9}{16},±\frac{9}{8},±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{64},±\frac{3}{32},±\frac{3}{16},±\frac{3}{8},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{64},±\frac{1}{32},±\frac{1}{16},±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
Por Teorema de raíz racional, todas las raíces racionales de un polinomio tienen el formato \frac{p}{q}, donde p divide el término constante 729 y q divide el 64 del coeficiente inicial. Enumerar todos los candidatos \frac{p}{q}.
x=-\frac{9}{4}
Busque una de estas raíces probando con todos los números enteros, empezando por el valor absoluto más pequeño. Si no encuentra ninguna raíz con número entero, pruebe con fracciones.
16x^{2}-36x+81=0
Por factor teorema, x-k es un factor del polinómico para cada k raíz. Divide 64x^{3}+729 entre 4\left(x+\frac{9}{4}\right)=4x+9 para obtener 16x^{2}-36x+81. Resuelva la ecuación en la que el resultado es 0.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 16\times 81}}{2\times 16}
Todas las ecuaciones del formulario ax^{2}+bx+c=0 pueden resolverse mediante la fórmula cuadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Sustituya 16 por a, -36 por b y 81 por c en la fórmula cuadrática.
x=\frac{36±\sqrt{-3888}}{32}
Haga los cálculos.
x=\frac{-9i\sqrt{3}+9}{8} x=\frac{9+9i\sqrt{3}}{8}
Resuelva la ecuación 16x^{2}-36x+81=0 cuando ± sea más y cuando ± sea menos.
x=-\frac{9}{4} x=\frac{-9i\sqrt{3}+9}{8} x=\frac{9+9i\sqrt{3}}{8}
Mostrar todas las soluciones encontradas.
±\frac{729}{64},±\frac{729}{32},±\frac{729}{16},±\frac{729}{8},±\frac{729}{4},±\frac{729}{2},±729,±\frac{243}{64},±\frac{243}{32},±\frac{243}{16},±\frac{243}{8},±\frac{243}{4},±\frac{243}{2},±243,±\frac{81}{64},±\frac{81}{32},±\frac{81}{16},±\frac{81}{8},±\frac{81}{4},±\frac{81}{2},±81,±\frac{27}{64},±\frac{27}{32},±\frac{27}{16},±\frac{27}{8},±\frac{27}{4},±\frac{27}{2},±27,±\frac{9}{64},±\frac{9}{32},±\frac{9}{16},±\frac{9}{8},±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{64},±\frac{3}{32},±\frac{3}{16},±\frac{3}{8},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{64},±\frac{1}{32},±\frac{1}{16},±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
Por Teorema de raíz racional, todas las raíces racionales de un polinomio tienen el formato \frac{p}{q}, donde p divide el término constante 729 y q divide el 64 del coeficiente inicial. Enumerar todos los candidatos \frac{p}{q}.
x=-\frac{9}{4}
Busque una de estas raíces probando con todos los números enteros, empezando por el valor absoluto más pequeño. Si no encuentra ninguna raíz con número entero, pruebe con fracciones.
16x^{2}-36x+81=0
Por factor teorema, x-k es un factor del polinómico para cada k raíz. Divide 64x^{3}+729 entre 4\left(x+\frac{9}{4}\right)=4x+9 para obtener 16x^{2}-36x+81. Resuelva la ecuación en la que el resultado es 0.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 16\times 81}}{2\times 16}
Todas las ecuaciones del formulario ax^{2}+bx+c=0 pueden resolverse mediante la fórmula cuadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Sustituya 16 por a, -36 por b y 81 por c en la fórmula cuadrática.
x=\frac{36±\sqrt{-3888}}{32}
Haga los cálculos.
x\in \emptyset
Puesto que la raíz cuadrada de un número negativo no está definida en el campo real, no hay ninguna solución.
x=-\frac{9}{4}
Mostrar todas las soluciones encontradas.