Resolver para x (solución compleja)
x=\frac{-\sqrt{19}i+3}{2}\approx 1,5-2,179449472i
x=\frac{3+\sqrt{19}i}{2}\approx 1,5+2,179449472i
Gráfico
Compartir
Copiado en el Portapapeles
-x^{2}+3x+5=12
Todas las ecuaciones con la forma ax^{2}+bx+c=0 se pueden resolver con la fórmula cuadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula cuadrática proporciona dos soluciones, una cuando ± es una suma y otra cuando es una resta.
-x^{2}+3x+5-12=12-12
Resta 12 en los dos lados de la ecuación.
-x^{2}+3x+5-12=0
Al restar 12 de su mismo valor, da como resultado 0.
-x^{2}+3x-7=0
Resta 12 de 5.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\left(-7\right)}}{2\left(-1\right)}
Esta ecuación tiene el formato estándar: ax^{2}+bx+c=0. Reemplace -1 por a, 3 por b y -7 por c en la fórmula cuadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-1\right)\left(-7\right)}}{2\left(-1\right)}
Obtiene el cuadrado de 3.
x=\frac{-3±\sqrt{9+4\left(-7\right)}}{2\left(-1\right)}
Multiplica -4 por -1.
x=\frac{-3±\sqrt{9-28}}{2\left(-1\right)}
Multiplica 4 por -7.
x=\frac{-3±\sqrt{-19}}{2\left(-1\right)}
Suma 9 y -28.
x=\frac{-3±\sqrt{19}i}{2\left(-1\right)}
Toma la raíz cuadrada de -19.
x=\frac{-3±\sqrt{19}i}{-2}
Multiplica 2 por -1.
x=\frac{-3+\sqrt{19}i}{-2}
Ahora, resuelva la ecuación x=\frac{-3±\sqrt{19}i}{-2} dónde ± es más. Suma -3 y i\sqrt{19}.
x=\frac{-\sqrt{19}i+3}{2}
Divide -3+i\sqrt{19} por -2.
x=\frac{-\sqrt{19}i-3}{-2}
Ahora, resuelva la ecuación x=\frac{-3±\sqrt{19}i}{-2} dónde ± es menos. Resta i\sqrt{19} de -3.
x=\frac{3+\sqrt{19}i}{2}
Divide -3-i\sqrt{19} por -2.
x=\frac{-\sqrt{19}i+3}{2} x=\frac{3+\sqrt{19}i}{2}
La ecuación ahora está resuelta.
-x^{2}+3x+5=12
Las ecuaciones cuadráticas como esta se pueden resolver si se completa el cuadrado. Para completar el cuadrado, la ecuación tiene que estar primero en la forma x^{2}+bx=c.
-x^{2}+3x+5-5=12-5
Resta 5 en los dos lados de la ecuación.
-x^{2}+3x=12-5
Al restar 5 de su mismo valor, da como resultado 0.
-x^{2}+3x=7
Resta 5 de 12.
\frac{-x^{2}+3x}{-1}=\frac{7}{-1}
Divide los dos lados por -1.
x^{2}+\frac{3}{-1}x=\frac{7}{-1}
Al dividir por -1, se deshace la multiplicación por -1.
x^{2}-3x=\frac{7}{-1}
Divide 3 por -1.
x^{2}-3x=-7
Divide 7 por -1.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-7+\left(-\frac{3}{2}\right)^{2}
Divida -3, el coeficiente del término x, mediante la 2 de obtener -\frac{3}{2}. A continuación, agregue el cuadrado de -\frac{3}{2} a los dos lados de la ecuación. Este paso hace que el lado izquierdo de la ecuación sea un cuadrado perfecto.
x^{2}-3x+\frac{9}{4}=-7+\frac{9}{4}
Obtiene el cuadrado de -\frac{3}{2}. Para hacerlo, calcula el cuadrado del numerador y el denominador de la fracción.
x^{2}-3x+\frac{9}{4}=-\frac{19}{4}
Suma -7 y \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=-\frac{19}{4}
Factor x^{2}-3x+\frac{9}{4}. En general, cuando x^{2}+bx+c es un cuadrado perfecto, siempre se puede factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{-\frac{19}{4}}
Toma la raíz cuadrada de los dos lados de la ecuación.
x-\frac{3}{2}=\frac{\sqrt{19}i}{2} x-\frac{3}{2}=-\frac{\sqrt{19}i}{2}
Simplifica.
x=\frac{3+\sqrt{19}i}{2} x=\frac{-\sqrt{19}i+3}{2}
Suma \frac{3}{2} a los dos lados de la ecuación.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}