Saltar al contenido principal
Factorizar
Tick mark Image
Calcular
Tick mark Image
Gráfico

Problemas similares de búsqueda web

Compartir

4y^{2}-9y-6561=0
Puede factorizar el polinomio cuadrático utilizando la transformación ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), donde x_{1} y x_{2} son las soluciones de la ecuación cuadrática ax^{2}+bx+c=0.
y=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 4\left(-6561\right)}}{2\times 4}
Todas las ecuaciones con la forma ax^{2}+bx+c=0 se pueden resolver con la fórmula cuadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula cuadrática proporciona dos soluciones, una cuando ± es una suma y otra cuando es una resta.
y=\frac{-\left(-9\right)±\sqrt{81-4\times 4\left(-6561\right)}}{2\times 4}
Obtiene el cuadrado de -9.
y=\frac{-\left(-9\right)±\sqrt{81-16\left(-6561\right)}}{2\times 4}
Multiplica -4 por 4.
y=\frac{-\left(-9\right)±\sqrt{81+104976}}{2\times 4}
Multiplica -16 por -6561.
y=\frac{-\left(-9\right)±\sqrt{105057}}{2\times 4}
Suma 81 y 104976.
y=\frac{-\left(-9\right)±9\sqrt{1297}}{2\times 4}
Toma la raíz cuadrada de 105057.
y=\frac{9±9\sqrt{1297}}{2\times 4}
El opuesto de -9 es 9.
y=\frac{9±9\sqrt{1297}}{8}
Multiplica 2 por 4.
y=\frac{9\sqrt{1297}+9}{8}
Ahora, resuelva la ecuación y=\frac{9±9\sqrt{1297}}{8} dónde ± es más. Suma 9 y 9\sqrt{1297}.
y=\frac{9-9\sqrt{1297}}{8}
Ahora, resuelva la ecuación y=\frac{9±9\sqrt{1297}}{8} dónde ± es menos. Resta 9\sqrt{1297} de 9.
4y^{2}-9y-6561=4\left(y-\frac{9\sqrt{1297}+9}{8}\right)\left(y-\frac{9-9\sqrt{1297}}{8}\right)
Factorice la expresión original con ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Sustituya \frac{9+9\sqrt{1297}}{8} por x_{1} y \frac{9-9\sqrt{1297}}{8} por x_{2}.