Resolver para x
x=\frac{\sqrt{6}-1}{2}\approx 0,724744871
x=\frac{-\sqrt{6}-1}{2}\approx -1,724744871
Gráfico
Compartir
Copiado en el Portapapeles
4x^{2}+4x=5
Todas las ecuaciones con la forma ax^{2}+bx+c=0 se pueden resolver con la fórmula cuadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula cuadrática proporciona dos soluciones, una cuando ± es una suma y otra cuando es una resta.
4x^{2}+4x-5=5-5
Resta 5 en los dos lados de la ecuación.
4x^{2}+4x-5=0
Al restar 5 de su mismo valor, da como resultado 0.
x=\frac{-4±\sqrt{4^{2}-4\times 4\left(-5\right)}}{2\times 4}
Esta ecuación tiene un formato estándar: ax^{2}+bx+c=0. Sustituya 4 por a, 4 por b y -5 por c en la fórmula cuadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 4\left(-5\right)}}{2\times 4}
Obtiene el cuadrado de 4.
x=\frac{-4±\sqrt{16-16\left(-5\right)}}{2\times 4}
Multiplica -4 por 4.
x=\frac{-4±\sqrt{16+80}}{2\times 4}
Multiplica -16 por -5.
x=\frac{-4±\sqrt{96}}{2\times 4}
Suma 16 y 80.
x=\frac{-4±4\sqrt{6}}{2\times 4}
Toma la raíz cuadrada de 96.
x=\frac{-4±4\sqrt{6}}{8}
Multiplica 2 por 4.
x=\frac{4\sqrt{6}-4}{8}
Ahora resuelva la ecuación x=\frac{-4±4\sqrt{6}}{8} cuando ± es más. Suma -4 y 4\sqrt{6}.
x=\frac{\sqrt{6}-1}{2}
Divide -4+4\sqrt{6} por 8.
x=\frac{-4\sqrt{6}-4}{8}
Ahora resuelva la ecuación x=\frac{-4±4\sqrt{6}}{8} cuando ± es menos. Resta 4\sqrt{6} de -4.
x=\frac{-\sqrt{6}-1}{2}
Divide -4-4\sqrt{6} por 8.
x=\frac{\sqrt{6}-1}{2} x=\frac{-\sqrt{6}-1}{2}
La ecuación ahora está resuelta.
4x^{2}+4x=5
Las ecuaciones cuadráticas como esta se pueden resolver si se completa el cuadrado. Para completar el cuadrado, la ecuación tiene que estar primero en la forma x^{2}+bx=c.
\frac{4x^{2}+4x}{4}=\frac{5}{4}
Divide los dos lados por 4.
x^{2}+\frac{4}{4}x=\frac{5}{4}
Al dividir por 4, se deshace la multiplicación por 4.
x^{2}+x=\frac{5}{4}
Divide 4 por 4.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{5}{4}+\left(\frac{1}{2}\right)^{2}
Divida 1, el coeficiente del término x, por 2 para obtener \frac{1}{2}. A continuación, agregue el cuadrado de \frac{1}{2} a ambos lados de la ecuación. Este paso hace que el lado izquierdo de la ecuación sea un cuadrado perfecto.
x^{2}+x+\frac{1}{4}=\frac{5+1}{4}
Obtiene el cuadrado de \frac{1}{2}. Para hacerlo, calcula el cuadrado del numerador y el denominador de la fracción.
x^{2}+x+\frac{1}{4}=\frac{3}{2}
Suma \frac{5}{4} y \frac{1}{4}. Para hacerlo, obtiene un denominador común y suma los numeradores y, después, reduce la fracción a los términos mínimos (si es posible).
\left(x+\frac{1}{2}\right)^{2}=\frac{3}{2}
Factoriza x^{2}+x+\frac{1}{4}. En general, cuando x^{2}+bx+c es un cuadrado perfecto, siempre se puede factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{3}{2}}
Toma la raíz cuadrada de los dos lados de la ecuación.
x+\frac{1}{2}=\frac{\sqrt{6}}{2} x+\frac{1}{2}=-\frac{\sqrt{6}}{2}
Simplifica.
x=\frac{\sqrt{6}-1}{2} x=\frac{-\sqrt{6}-1}{2}
Resta \frac{1}{2} en los dos lados de la ecuación.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}