Saltar al contenido principal
Resolver para x
Tick mark Image
Gráfico

Problemas similares de búsqueda web

Compartir

4x^{2}-4x-16=0
Todas las ecuaciones con la forma ax^{2}+bx+c=0 se pueden resolver con la fórmula cuadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula cuadrática proporciona dos soluciones, una cuando ± es una suma y otra cuando es una resta.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4\left(-16\right)}}{2\times 4}
Esta ecuación tiene el formato estándar: ax^{2}+bx+c=0. Reemplace 4 por a, -4 por b y -16 por c en la fórmula cuadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 4\left(-16\right)}}{2\times 4}
Obtiene el cuadrado de -4.
x=\frac{-\left(-4\right)±\sqrt{16-16\left(-16\right)}}{2\times 4}
Multiplica -4 por 4.
x=\frac{-\left(-4\right)±\sqrt{16+256}}{2\times 4}
Multiplica -16 por -16.
x=\frac{-\left(-4\right)±\sqrt{272}}{2\times 4}
Suma 16 y 256.
x=\frac{-\left(-4\right)±4\sqrt{17}}{2\times 4}
Toma la raíz cuadrada de 272.
x=\frac{4±4\sqrt{17}}{2\times 4}
El opuesto de -4 es 4.
x=\frac{4±4\sqrt{17}}{8}
Multiplica 2 por 4.
x=\frac{4\sqrt{17}+4}{8}
Ahora, resuelva la ecuación x=\frac{4±4\sqrt{17}}{8} dónde ± es más. Suma 4 y 4\sqrt{17}.
x=\frac{\sqrt{17}+1}{2}
Divide 4+4\sqrt{17} por 8.
x=\frac{4-4\sqrt{17}}{8}
Ahora, resuelva la ecuación x=\frac{4±4\sqrt{17}}{8} dónde ± es menos. Resta 4\sqrt{17} de 4.
x=\frac{1-\sqrt{17}}{2}
Divide 4-4\sqrt{17} por 8.
x=\frac{\sqrt{17}+1}{2} x=\frac{1-\sqrt{17}}{2}
La ecuación ahora está resuelta.
4x^{2}-4x-16=0
Las ecuaciones cuadráticas como esta se pueden resolver si se completa el cuadrado. Para completar el cuadrado, la ecuación tiene que estar primero en la forma x^{2}+bx=c.
4x^{2}-4x-16-\left(-16\right)=-\left(-16\right)
Suma 16 a los dos lados de la ecuación.
4x^{2}-4x=-\left(-16\right)
Al restar -16 de su mismo valor, da como resultado 0.
4x^{2}-4x=16
Resta -16 de 0.
\frac{4x^{2}-4x}{4}=\frac{16}{4}
Divide los dos lados por 4.
x^{2}+\left(-\frac{4}{4}\right)x=\frac{16}{4}
Al dividir por 4, se deshace la multiplicación por 4.
x^{2}-x=\frac{16}{4}
Divide -4 por 4.
x^{2}-x=4
Divide 16 por 4.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=4+\left(-\frac{1}{2}\right)^{2}
Divida -1, el coeficiente del término x, mediante la 2 de obtener -\frac{1}{2}. A continuación, agregue el cuadrado de -\frac{1}{2} a los dos lados de la ecuación. Este paso hace que el lado izquierdo de la ecuación sea un cuadrado perfecto.
x^{2}-x+\frac{1}{4}=4+\frac{1}{4}
Obtiene el cuadrado de -\frac{1}{2}. Para hacerlo, calcula el cuadrado del numerador y el denominador de la fracción.
x^{2}-x+\frac{1}{4}=\frac{17}{4}
Suma 4 y \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{17}{4}
Factor x^{2}-x+\frac{1}{4}. En general, cuando x^{2}+bx+c es un cuadrado perfecto, siempre se puede factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{17}{4}}
Toma la raíz cuadrada de los dos lados de la ecuación.
x-\frac{1}{2}=\frac{\sqrt{17}}{2} x-\frac{1}{2}=-\frac{\sqrt{17}}{2}
Simplifica.
x=\frac{\sqrt{17}+1}{2} x=\frac{1-\sqrt{17}}{2}
Suma \frac{1}{2} a los dos lados de la ecuación.