Resolver para x
x=3
x=9
Gráfico
Compartir
Copiado en el Portapapeles
x^{2}-12x+27=0
Divide los dos lados por 2.
a+b=-12 ab=1\times 27=27
Para resolver la ecuación, desborde la mano izquierda agrupando. En primer lugar, la izquierda debe reescribirse como x^{2}+ax+bx+27. Para buscar a y b, configure un sistema que se va a resolver.
-1,-27 -3,-9
Dado que ab es positivo, a y b tienen el mismo signo. Dado que a+b es negativo, a y b son negativos. Mostrar todos los pares de números enteros que den como producto 27.
-1-27=-28 -3-9=-12
Calcule la suma de cada par.
a=-9 b=-3
La solución es el par que proporciona suma -12.
\left(x^{2}-9x\right)+\left(-3x+27\right)
Vuelva a escribir x^{2}-12x+27 como \left(x^{2}-9x\right)+\left(-3x+27\right).
x\left(x-9\right)-3\left(x-9\right)
Factoriza x en el primero y -3 en el segundo grupo.
\left(x-9\right)\left(x-3\right)
Simplifica el término común x-9 con la propiedad distributiva.
x=9 x=3
Para buscar soluciones de ecuaciones, resuelva x-9=0 y x-3=0.
2x^{2}-24x+54=0
Todas las ecuaciones con la forma ax^{2}+bx+c=0 se pueden resolver con la fórmula cuadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula cuadrática proporciona dos soluciones, una cuando ± es una suma y otra cuando es una resta.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 2\times 54}}{2\times 2}
Esta ecuación tiene el formato estándar: ax^{2}+bx+c=0. Reemplace 2 por a, -24 por b y 54 por c en la fórmula cuadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 2\times 54}}{2\times 2}
Obtiene el cuadrado de -24.
x=\frac{-\left(-24\right)±\sqrt{576-8\times 54}}{2\times 2}
Multiplica -4 por 2.
x=\frac{-\left(-24\right)±\sqrt{576-432}}{2\times 2}
Multiplica -8 por 54.
x=\frac{-\left(-24\right)±\sqrt{144}}{2\times 2}
Suma 576 y -432.
x=\frac{-\left(-24\right)±12}{2\times 2}
Toma la raíz cuadrada de 144.
x=\frac{24±12}{2\times 2}
El opuesto de -24 es 24.
x=\frac{24±12}{4}
Multiplica 2 por 2.
x=\frac{36}{4}
Ahora, resuelva la ecuación x=\frac{24±12}{4} dónde ± es más. Suma 24 y 12.
x=9
Divide 36 por 4.
x=\frac{12}{4}
Ahora, resuelva la ecuación x=\frac{24±12}{4} dónde ± es menos. Resta 12 de 24.
x=3
Divide 12 por 4.
x=9 x=3
La ecuación ahora está resuelta.
2x^{2}-24x+54=0
Las ecuaciones cuadráticas como esta se pueden resolver si se completa el cuadrado. Para completar el cuadrado, la ecuación tiene que estar primero en la forma x^{2}+bx=c.
2x^{2}-24x+54-54=-54
Resta 54 en los dos lados de la ecuación.
2x^{2}-24x=-54
Al restar 54 de su mismo valor, da como resultado 0.
\frac{2x^{2}-24x}{2}=-\frac{54}{2}
Divide los dos lados por 2.
x^{2}+\left(-\frac{24}{2}\right)x=-\frac{54}{2}
Al dividir por 2, se deshace la multiplicación por 2.
x^{2}-12x=-\frac{54}{2}
Divide -24 por 2.
x^{2}-12x=-27
Divide -54 por 2.
x^{2}-12x+\left(-6\right)^{2}=-27+\left(-6\right)^{2}
Divida -12, el coeficiente del término x, mediante la 2 de obtener -6. A continuación, agregue el cuadrado de -6 a los dos lados de la ecuación. Este paso hace que el lado izquierdo de la ecuación sea un cuadrado perfecto.
x^{2}-12x+36=-27+36
Obtiene el cuadrado de -6.
x^{2}-12x+36=9
Suma -27 y 36.
\left(x-6\right)^{2}=9
Factor x^{2}-12x+36. En general, cuando x^{2}+bx+c es un cuadrado perfecto, siempre se puede factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{9}
Toma la raíz cuadrada de los dos lados de la ecuación.
x-6=3 x-6=-3
Simplifica.
x=9 x=3
Suma 6 a los dos lados de la ecuación.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}