Saltar al contenido principal
Factorizar
Tick mark Image
Calcular
Tick mark Image
Gráfico

Problemas similares de búsqueda web

Compartir

2\left(x^{2}-x-6\right)
Simplifica 2.
a+b=-1 ab=1\left(-6\right)=-6
Piense en x^{2}-x-6. Factoriza la expresión agrupando. Primero, es necesario volver a escribir la expresión como x^{2}+ax+bx-6. Para buscar a y b, configure un sistema que se va a resolver.
1,-6 2,-3
Dado que ab es negativo, a y b tienen los signos opuestos. Dado que a+b es negativa, el número negativo tiene un valor absoluto mayor que el positivo. Mostrar todos los pares de números enteros que den como producto -6.
1-6=-5 2-3=-1
Calcule la suma de cada par.
a=-3 b=2
La solución es el par que proporciona suma -1.
\left(x^{2}-3x\right)+\left(2x-6\right)
Vuelva a escribir x^{2}-x-6 como \left(x^{2}-3x\right)+\left(2x-6\right).
x\left(x-3\right)+2\left(x-3\right)
Factoriza x en el primero y 2 en el segundo grupo.
\left(x-3\right)\left(x+2\right)
Simplifica el término común x-3 con la propiedad distributiva.
2\left(x-3\right)\left(x+2\right)
Vuelva a escribir la expresión factorizada completa.
2x^{2}-2x-12=0
Puede factorizar el polinomio cuadrático utilizando la transformación ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), donde x_{1} y x_{2} son las soluciones de la ecuación cuadrática ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\left(-12\right)}}{2\times 2}
Todas las ecuaciones con la forma ax^{2}+bx+c=0 se pueden resolver con la fórmula cuadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula cuadrática proporciona dos soluciones, una cuando ± es una suma y otra cuando es una resta.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 2\left(-12\right)}}{2\times 2}
Obtiene el cuadrado de -2.
x=\frac{-\left(-2\right)±\sqrt{4-8\left(-12\right)}}{2\times 2}
Multiplica -4 por 2.
x=\frac{-\left(-2\right)±\sqrt{4+96}}{2\times 2}
Multiplica -8 por -12.
x=\frac{-\left(-2\right)±\sqrt{100}}{2\times 2}
Suma 4 y 96.
x=\frac{-\left(-2\right)±10}{2\times 2}
Toma la raíz cuadrada de 100.
x=\frac{2±10}{2\times 2}
El opuesto de -2 es 2.
x=\frac{2±10}{4}
Multiplica 2 por 2.
x=\frac{12}{4}
Ahora, resuelva la ecuación x=\frac{2±10}{4} dónde ± es más. Suma 2 y 10.
x=3
Divide 12 por 4.
x=-\frac{8}{4}
Ahora, resuelva la ecuación x=\frac{2±10}{4} dónde ± es menos. Resta 10 de 2.
x=-2
Divide -8 por 4.
2x^{2}-2x-12=2\left(x-3\right)\left(x-\left(-2\right)\right)
Factorice la expresión original con ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Sustituya 3 por x_{1} y -2 por x_{2}.
2x^{2}-2x-12=2\left(x-3\right)\left(x+2\right)
Simplifica todas las expresiones con la forma p-\left(-q\right) a p+q.